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boundary and the horizon. The modes on the string are excited by the thermal black hole

environment and consequently the string endpoint at the boundary undergoes an erratic

motion, which is identified with an external quark in the boundary CFT exhibiting Brown-

ian motion. Semiclassically, the modes on the string are thermally excited due to Hawking

radiation, which translates into the random force appearing in the boundary Langevin

equation, while the friction in the Langevin equation corresponds to the excitation on the

string being absorbed by the black hole. We give a bulk proof of the fluctuation-dissipation

theorem relating the random force and friction. This work can be regarded as a step toward
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1 Introduction

One of the interesting problems in statistical mechanics concerns the understanding of the

origin of macroscopic dissipation and the approach to thermal equilibrium from micro-

scopical point of view. Conventionally, given a statistical system in the thermodynamic

or hydrodynamic limit, we imagine the collisions between the microscopic constituents

of our system as being responsible for both of these macroscopic phenomena. This ki-

netic theory based picture is firmly anchored on the basic idea of Brownian motion — in

1827, the botanist Robert Brown observed [1] under a microscope that tiny pollen parti-

cles suspended in water undergo incessant irregular motion, which became known as the

Brownian motion.1 As is well-known now, this peculiar motion is due to collisions with

the fluid particles in random thermal motion. Therefore, any particle immersed in fluid

at finite temperature exhibits such Brownian motion, from a small pendulum suspended

in a dilute gas [6] to a heavy particle in quark-gluon plasma. This universal phenomenon

suggests that the interaction with microscopic constituents is responsible for dissipation

and thermalization on macroscopic scales.

Since its advent, the holographic AdS/CFT correspondence [7–10] has been exploited

to study the physics of non-Abelian quark-gluon plasmas at finite temperature from bulk

gravitational physics, and vice versa. The dual gravitational description of strongly cou-

pled gauge theories provides an efficient way to study the thermodynamic properties and

the phase structure of the gauge theory. More recently, it has become clear that one can

also exploit the gravitational description to understand the hydrodynamic regime of the

quark-gluon plasma, as was originally proposed in [11] and has been significantly devel-

oped afterwards (see [12] and references therein for earlier work on hydrodynamics in the

AdS/CFT context). Namely, the long-wavelength physics described by a hydrodynamical

Navier-Stokes equation on the boundary side is holographically dual to the long-wavelength

fluctuation of the horizons of asymptotically AdS black hole spacetimes on the gravita-

tional side. This correspondence allows for a detailed quantitative study of the plasma

from the bulk, and vice versa. It is thus a natural question to ask whether one can obtain

a holographic description of Brownian motion, which is one step towards the microphysics

underlying thermodynamics and hydrodynamics. The aim of this paper is to answer this

question in the affirmative.

One intrinsic reason to be interested in Brownian motion within a holographic setting

is to better understand the microscopic origin of the thermodynamic properties of black

holes. It has become clear from the formulation of the AdS/CFT correspondence that one

has an in-principle solution to the problem of quantum dynamics of black holes: we only

need to solve the problem phrased in terms of the dual field theory variables. However, it

is fair to say that a concrete quantitative understanding of the physics in these contexts is

still lacking. One of the most useful playgrounds for understanding the quantum behavior

of black holes has been the arena of supersymmetric black holes [13, 14]. Here we not only

understand in many cases the microscopic origin of black hole entropy, but also in a number

of cases have a bulk picture of the nature of the microscopic states making up the black

1Classic reviews on Brownian motion are [2–4]. For a more complete list of references, see e.g. [5].
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hole degeneracy. In fact, from these various analyses, there emerges a rather intriguing

picture of a quantum black hole — the black hole microstates form a sort of spacetime

foam that replaces the region inside the horizon. Any single microstate is horizon-free,

but the typical microstates are expected to exhibit the characteristic features of black hole

spacetimes, which has been confirmed explicitly for some concrete systems; see [15–18] for

reviews. Given this state of affairs one might probe these microstates beyond equilibrium

thermodynamics and ask how the ensemble of them leads to dissipation and thermalization

seen in a thermal medium. Understanding the description of Brownian motion seems then

a natural step towards getting a handle on the problem.

Conversely, as mentioned above, the AdS/CFT correspondence has been immensely

useful in understanding many qualitative (and sometimes quantitative) features of quark-

gluon plasmas. The famous lower bound on the ratio of shear-viscosity to entropy density

for relativistic hydrodynamic systems, η/s ≥ 1/4π [19] (see also a review [12]), has certainly

played an important role in obtaining a quantitative understanding of the dynamics of the

quark-gluon plasma produced at RHIC. Furthermore, studies of the motion of quarks,

mesons, and baryons in the quark-gluon plasma have been carried out in the holographic

framework starting with the seminal papers [20–27], by considering the dynamics of probe

strings and D-branes in asymptotically AdS black hole spacetime — for a sample of recent

reviews on the subject, see [28]. The general philosophy in these discussions was to use the

probe dynamics to extract the rates of energy loss and transverse momentum broadening

in the medium, which bear direct relevance to the physical problem of motion of quarks

and mesons in the quark-gluon plasma. In such computations, the motion of an external

quark in the quark-gluon plasma is assumed to be described by a relativistic Langevin

equation [29]. In the most basic form, the Langevin equation is parametrized by two

constants: the friction (drag force) coefficient γ and the magnitude of the random force

κ.2 Furthermore, the random force is assumed to be white noise. By using the AdS/CFT

realization of external quarks, refs. [20, 22] determined the friction coefficient γ, while

refs. [24, 25, 27] computed the random force κ.3

Therefore, one can say that the most basic data of the Langevin equation describing

Brownian motion in the CFT plasma are already available. However, rather than taking

such approaches which are phenomenological in some sense, one could study more funda-

mental aspects of Brownian motion in the AdS/CFT context. For example, in the first

place, why does an external quark exhibit Brownian motion, and why is the motion de-

scribed by a Langevin equation? While the domain of validity of the Langevin equation is

clear from the previous results on the drag force, can we identify the origins of the Brownian

motion approximation from the bulk gravitational description? What is the bulk meaning

2 More precisely, in the relativistic case, the random force has different magnitudes κL and κT in the

directions transverse and longitudinal to the momentum p. In the non-relativistic limit p → 0, they are

equal: κL = κT . The parameters γ and κL are related to each other by the Einstein relation, under the

assumption that the Langevin dynamics holds and gives the Jüttner distribution e−βE. On the other hand,

κT is an independent parameter [25, 29].
3More precisely, [20, 22] computed γ and [25, 27] computed κT , both in the relativistic case (the com-

putation of [24] was nonrelativistic). The longitudinal component κL does not have to be computed inde-

pendently, since it is related to γ by the Einstein relation. See also footnote 2.
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Figure 1. The bulk dual of a Brownian particle: a fundamental string hanging from the boundary

of the AdS space and dipping into the horizon. The AdS black hole environment excites the modes

on the string and, as a result, the string endpoint at infinity moves randomly, corresponding to the

Brownian motion on the boundary.

of the fluctuation-dissipation theorem relating γ and κ? The main purpose of the current

paper is to elucidate the AdS/CFT physics of Brownian motion, by addressing such ques-

tions. For example, the computation of the random force in [24, 25, 27] using the GKPW

prescription [8, 9] does not explain what the bulk counterpart of the random force is. We

will see that it corresponds to a version of Hawking radiation in the bulk.4

Since we want to model Brownian motion, we need a gravitational analog of a particle

immersed in a thermal medium. In the boundary field theory a natural particle is a test

quark of large but finite mass immersed in the quark-gluon plasma. This is realized in the

dual gravitational picture by introducing a fundamental string in the Schwarzschild-AdS

background. The endpoint of the string at the boundary then corresponds to the test quark

which undergoes Brownian motion; see figure 1.

We will use this simple picture of a probe fundamental string in a black hole background

to “derive” the Brownian motion which the string endpoint on the boundary undergoes.5

The basic idea is to quantize the fluctuations of the string world-sheet about a classical

solution, which in the situations of interest corresponds to a straight string hanging down

from the boundary. Since the bulk geometry has an event horizon, the induced metric

on the string world-sheet also corresponds to a black hole geometry and the problem of

studying fluctuations reduces to the dynamics of two dimensional quantum fields in curved

spacetime. By quantizing the fluctuations we relate the quantum modes of the string to the

boundary endpoint. This mapping in principle allows one to use the correlation functions

of the position of the string endpoint on the boundary to recover the excitation spectrum

of the string world-sheet. Assuming the validity of the semiclassical approximation, we can

then relate the thermal physics of the Hawking radiation to the Brownian motion of the

string endpoint and derive the Langevin equation for the boundary dynamics.

4For an earlier discussion of the relation between Hawking radiation and diffusion the context of

AdS/QCD, see [30].
5A preliminary discussion of the fluctuations of a fundamental string in an asymptotically AdS black

hole background can be found in [31].
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The organization of the rest of the paper is as follows. In section 2, we set the stage

for our discussion by first reviewing the Langevin equation describing Brownian motion in

the field theory context. We then turn to a holographic realization of Brownian motion

in terms of the dynamics of a probe fundamental string stretching from the boundary to

the horizon of an asymptotically AdS black hole geometry in d dimensions. We write

down the explicit relation between the boundary and bulk quantities associated with the

holographic Brownian motion. This boundary-bulk relation can be explicitly worked out at

the semiclassical level, which we turn to in section 3, focussing on the simple case of three

dimensional spacetimes. There, we assume that modes on the string are thermally excited

due to Hawking radiation and we derive the Langevin dynamics exhibited by the boundary

Brownian particle. The friction and the random force appearing in the Langevin equation

are related to each other by the fluctuation-dissipation theorem. In section 4, we study

this theorem from the bulk viewpoint and give a bulk proof of it in the general case. In

section 5, we generalize the discussion in section 3 for d = 3 to general dimensions. Despite

being unable to quantize the modes on the string analytically in this case we nevertheless

show that at small frequencies we recover the Langevin equation. In section 6, we study

whether the bulk Brownian motion of the fundamental string can be interpreted as being

caused by a suitable movement of the string endpoint on the horizon, the idea being that

the endpoint is randomly excited by the stringy gas living on a membrane just outside the

horizon, much as in the spirit of the membrane paradigm. We also provide a preliminary

discussion of how to use our setup to study microscopic properties of the stretched horizon.

Ultimately, we would like to directly probe properties of the quasi-particles that make up

the stringy gas living at the stretched horizon, but that is beyond the scope of the present

paper. Section 7 is devoted to a discussion. Some of the relevant technical details are

collected in the appendices.

2 Holographic Brownian motion

To set the stage for our discussion we begin with a brief review of the Langevin dynamics

that describes the Brownian motion. This discussion will be the field theoretic, or boundary,

side of the story in the AdS/CFT context. Turning to the corresponding bulk description,

we will then describe how one can set up the problem of studying the motion of a Brownian

particle in a thermal medium in terms of a probe string in an asymptotically Schwarzschild-

AdS black hole background.

2.1 Brownian motion and Langevin dynamics

Let us begin with the Langevin equation, which is the simplest model describing a non-

relativistic Brownian particle of mass m in one spatial dimension:

ṗ(t) = −γ0 p(t) +R(t), (2.1)

where p = mẋ is the (non-relativistic) momentum of the Brownian particle at position

x, and ˙ ≡ d/dt. The two terms on the right hand side of (2.1) correspond to friction

and a random force, respectively, and γ0 is a constant called the friction coefficient. One

– 5 –
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can think of the particle as losing energy to the medium due to the friction term and

concurrently getting a random kick from the thermal bath modeled by the random force,

which we assume to be white noise with the following average:

〈R(t)〉 = 0, 〈R(t)R(t′)〉 = κ0 δ(t− t′), (2.2)

where κ0 is a constant. The separation of the force into frictional and random parts on the

right hand side of (2.1) is merely a phenomenological simplification — microscopically, the

two forces have the same origin (collision with the fluid constituents).

Assuming equipartition of energy, 〈mẋ2〉 = T , with T the temperature,6 one can derive

the following time evolution for the displacement squared [2]:

〈s(t)2〉 ≡ 〈[x(t) − x(0)]2〉 =
2D

γ0

(
γ0 t− 1 + e−γ0 t

)
≈





T

m
t2

(
t ≪ 1

γ0

)

2D t

(
t ≫ 1

γ0

) (2.3)

where the diffusion constant D is related to the friction coefficient γ0 by the Sutherland-

Einstein relation,

D =
T

γ0m
. (2.4)

We can see that in the ballistic regime, t ≪ 1/γ0, the particle moves inertially (s ∼ t)

with the velocity determined by equipartition, ẋ ∼
√
T/m, while in the diffusive regime,

t ≫ 1/γ0, the particle undergoes a random walk (s ∼
√
t). This is because the Brownian

particle must be hit by a certain number of fluid particles to get substantially diverted

from the direction of its initial velocity. The crossover time between the two regimes is the

relaxation time

trelax ∼ 1

γ0
, (2.5)

which characterizes the time scale for the Brownian particle to forget its initial velocity

and thermalize. One can also derive the relation between the friction coefficient γ0 and the

size of the random force κ0

γ0 =
κ0

2mT
, (2.6)

which is the simplest example of the fluctuation-dissipation theorem and arises due to the

fact that the frictional and random forces are of the same origin.

In n spatial dimensions, p and R in (2.1) are generalized to n component vectors

and (2.2) is generalized to

〈Ri(t)〉 = 0, 〈Ri(t)Rj(t
′)〉 = κ0 δij δ(t− t′), (2.7)

6We shall work in units where the Boltzmann constant kB = 1.

– 6 –
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where i, j = 1, . . . , n. In the diffusive regime, the displacement squared goes as 〈s(t)2〉 ≈
2nDt. The Sutherland-Einstein relation (2.4) and the fluctuation-dissipation relation (2.6)

are independent of n.

Now let us go back to the case with one spatial dimension (n = 1). The Langevin

equation (2.1), (2.2) captures certain essential features of physics, but nevertheless is too

simple, for two reasons. It assumes that the friction is instantaneous and that there is no

correlation between random forces at different times (eq. (2.2)). If the Brownian particle is

not infinitely more massive than the fluid particles, these assumptions are no longer valid;

friction will depend on the past history of the particle, and random forces at different times

will not be fully independent. We can incorporate these effects by generalizing the simplest

Langevin equation (2.1) to the so-called generalized Langevin equation [32, 33],

ṗ(t) = −
∫ t

−∞
dt′ γ(t− t′) p(t′) +R(t) +K(t). (2.8)

Now the friction term depends on the past trajectory via the memory kernel γ(t). The

random force is taken to satisfy

〈R(t)〉 = 0, 〈R(t)R(t′)〉 = κ(t− t′), (2.9)

where κ(t) is some function. We have also now introduced an external force K(t) that can

be applied to the system.

To analyze the physical content of the generalized Langevin equation we Fourier trans-

form (2.8) to obtain

p(ω) =
R(ω) +K(ω)

γ[ω] − iω
, (2.10)

where p(ω), R(ω),K(ω) are Fourier transforms, e.g.,

p(ω) =

∫ ∞

−∞
dt p(t) eiωt, (2.11)

while γ[ω] is the Fourier-Laplace transform:

γ[ω] =

∫ ∞

0
dt γ(t) eiωt. (2.12)

If we take the statistical average of (2.10), the random force vanishes because of the

first equation in (2.9), and we obtain

〈p(ω)〉 = µ(ω)K(ω), µ(ω) ≡ 1

γ[ω] − iω
. (2.13)

µ(ω) is called the admittance. So, we can determine the admittance µ(ω), and thereby

γ[ω], by measuring the response 〈p(ω)〉 to an external force. In particular, if the external

force is

K(t) = K0 e
−iωt, (2.14)

– 7 –
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then 〈p(t)〉 is simply

〈p(t)〉 = µ(ω)K0 e
−iωt. (2.15)

For a quantity O(t), define the power spectrum IO(ω) by

IO(ω) =

∫ ∞

−∞
dt 〈O(t0)O(t0 + t)〉 eiωt. (2.16)

Note that 〈O(t0)O(t0 + t)〉 is independent of t0 in a stationary system. The knowledge of

power spectrum is the same as that of 2-point function, because of the Wiener-Khintchine

theorem

〈O(ω)O(ω′)〉 = 2πδ(ω + ω′)IO(ω). (2.17)

Now consider the case without an external force, i.e., K = 0. In this case, from (2.10),

p(ω) =
R(ω)

γ[ω] − iω
. (2.18)

Therefore, the power spectrum of p and that for R are related as

Ip(ω) =
IR(ω)

|γ[ω] − iω|2 . (2.19)

Combining (2.15) and (2.19), one can determine both γ(t) and κ(t) appearing in the

Langevin equation (2.8) and (2.9) separately. However, as we will discuss in section 4,

these two quantities are not independent but are related to each other by the fluctuation-

dissipation theorem, which is the generalization of the relation (2.6).

For the generalized Langevin equation, what corresponds to the relaxation time (2.5) is

trelax =

[∫ ∞

0
dt γ(t)

]−1

=
1

γ[ω = 0]
= µ(ω = 0). (2.20)

If γ(t) is sharply peaked around t = 0, we can ignore the retarded effect of the friction

term in (2.8) and write

∫ ∞

0
dt′ γ(t− t′) p(t′) ≈

∫ ∞

0
dt′ γ(t′) · p(t) =

1

trelax
p(t). (2.21)

Then the Langevin equation reduces to the simple Langevin equation (2.1) and it is clear

that trelax corresponds to the thermalization time for the Brownian particle.

Another physically relevant time scale, the microscopic (or collision duration) time

tcoll, is defined to be the width of the random force correlator function κ(t). Specifically,

let us define

tcoll =

∫ ∞

0
dt
κ(t)

κ(0)
. (2.22)

– 8 –
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If κ(t) = κ(0)e−t/tcoll , the right hand side of this precisely gives tcoll. This tcoll characterizes

the time scale over which the random force is correlated, and thus can be thought of as

the time elapsed in a single process of scattering. In many cases,

trelax ≫ tcoll. (2.23)

Typical examples for which (2.23) holds are the case where the particle is scattered occa-

sionally by dilute scatterers, and the case where a heavy particle is hit frequently by much

smaller particles [32]. As we will see later, for the Brownian motion dual to AdS black

holes, the field theories are strongly coupled CFTs and (2.23) does not necessarily hold.

There is also a third natural time scale tmfp given by the typical time elapsed between

two collisions. In the kinetic theory, this mean free path time is typically tcoll ≪ tmfp ≪
trelax; however in the case of present interest, this separation no longer holds, as we will see.

2.2 Bulk counterpart of Brownian motion

The AdS/CFT correspondence states that string theory in AdSd is dual to a CFT in (d−1)

dimensions. In particular, the (planar) Schwarzschild-AdS black hole with metric

ds2d =
r2

ℓ2

[
−h(r) dt2 + d ~X2

d−2

]
+

ℓ2

r2h(r)
dr2, h(r) = 1 −

(rH
r

)d−1
(2.24)

is dual to a CFT at a temperature equal to the Hawking temperature of the black hole,

T =
1

β
=

(d− 1) rH
4π ℓ2

. (2.25)

In the above, ℓ is the AdS radius, and t, ~Xd−2 = (X1, . . . ,Xd−2) ∈ R
d−2 are the boundary

coordinates.

In this black hole geometry (2.24), let us consider a fundamental string suspended from

the boundary at r = ∞, straight down along the r direction, into the horizon at r = rH ; see

figure 1. In the boundary CFT, this corresponds to having a very heavy external charged

particle. The ~Xd−2 coordinates of the string at r = ∞ in the bulk give the boundary

position of the external particle. As we discussed above, such an external particle at finite

temperature T is expected to undergo Brownian motion. The dual statement must be that

the black hole environment in the bulk excites the modes on the string and, as the result,

the endpoint of the string at r = ∞ exhibits a Brownian motion which can be modeled by

a Langevin equation.

We study this motion of a string in the probe approximation where we ignore its

backreaction on the background geometry. We assume that there is no B-field in the

background, which is the case for AdS3 based on D1- and D5-branes, and AdS5 based on

D3-branes. If we take the string coupling gs to be very small, the interaction of the string

with the thermal gas of closed strings in the bulk of the AdS space can be ignored; the

only possible region with appreciable interaction is near the black hole horizon which the

string is dipping into.

Let us slightly generalize (2.24) for a little while and consider the following metric:

ds2 = gµν(x) dxµ dxν +GIJ(x) dXI dXJ , (2.26)

– 9 –
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where xµ = t, r and I, J = 1, . . . , d − 2. For the spacetimes of interest, both gµν and GIJ

are independent of XI .7 Now, we stretch a string along the r direction and consider small

fluctuation of it in the transverse directions XI . The action for the string is simply the

Nambu-Goto action in the absence of B-field. In the gauge where the world-sheet coordi-

nates are identified with the spacetime coordinates xµ = t, r, the transverse fluctuations

XI become functions of xµ: XI = XI(x). If we expand the Nambu-Goto action up to

quadratic order in XI , we obtain

SNG = − 1

2πα′

∫
d2x

√
− det γµν

≈ − 1

4πα′

∫
d2x

√
−g(x) gµν(x)GIJ (x)

∂XI

∂xµ

∂XJ

∂xν
≡ S

(2)
NG, (2.27)

where γµν is the induced metric, gµν is the inverse of gµν , and g = det gµν . In the last line

we dropped the constant term that does not depend on XI . The quadratic approximation

is of course valid as long as the scalars XI do not fluctuate too far from their equilibrium

value (taken here to be XI = 0).8 In fact, this quadratic fluctuation Lagrangian for

the world-sheet scalars (2.27) can be thought of as taking the non-relativistic limit; the

Nambu-Goto action is after all a non-polynomial action in the velocities ∂tX
I and we are

expanding in the regime |∂tX
I | ≪ 1. Therefore, we expect (and will see) that the dual

Langevin dynamics on the boundary will also be a non-relativistic one, which is precisely

what we reviewed in the previous subsection. For most of the paper, we will use this

quadratic action S
(2)
NG to study the fluctuations of the string.9 The equation of motion

derived from (2.27) is

0 = ∇µ(GIJ ∂µX
I) =

1√−g ∂µ(
√−g gµν GIJ ∂νX

J), (2.28)

where ∇µ is the covariant derivative with respect to gµν . Note that this is not the same

as the Klein-Gordon equation in the spacetime (2.26), which would involve not just ∂µ =

∂/∂xµ but also ∂I = ∂/∂XI .

Returning to the AdS black hole metric (2.24), we focus first on the AdS3 (d = 3) case

for simplicity (we will discuss AdSd with general d in section 5) and study the motion of a

string in the black hole background. In this case, the metric (2.24) becomes the nonrotating

BTZ black hole:

ds2 = −r
2 − r2H
ℓ2

dt2 +
r2

ℓ2
dX2 +

ℓ2

r2 − r2H
dr2. (2.29)

7We will mainly focus on planar black holes in AdS corresponding to thermal field theories on R
d−1,1

when the transverse directions to the string XI are indeed Killing directions in the bulk.
8One can show that when the modes on the string are thermally excited in a black hole background at

temperature T , this quadratic approximation is valid outside the black hole except for the region within√
α′ away from the horizon.
9In appendix D, we will consider the next leading terms (quartic terms) when we estimate the mean free

path time tmfp.
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For the usual BTZ black hole, X is written as X = ℓφ where φ ∼= φ+ 2π, but here we are

taking X ∈ R. The Hawking temperature (2.25) is, in this case,

T ≡ 1

β
=

rH
2π ℓ2

. (2.30)

In terms of the tortoise coordinate r∗, the metric (2.29) becomes

ds2 =
r2 − r2H
ℓ2

(−dt2 + dr2∗) +
r2

ℓ2
dX2, r∗ ≡

ℓ2

2rH
ln

(
r − rH
r + rH

)
. (2.31)

For the BTZ metric (2.29), the equation of motion (2.28) becomes

[
−∂2

t +
r2 − r2H
ℓ4 r2

∂r

(
r2 (r2 − r2H) ∂r

)]
X(t, r) = 0. (2.32)

As usual, we proceed by expanding X in modes. Let us set

X(t, r) = e−iωtfω(r). (2.33)

Then the equation of motion (2.32) can be written as

[
ν2 +

ρ2 − 1

ρ2
∂ρ

(
ρ2(ρ2 − 1)∂ρ

)]
fω = 0, (2.34)

where we defined dimensionless quantities

ρ ≡ r

rH
, ν ≡ ℓ2ω

rH
=
βω

2π
. (2.35)

One can see that the linearly independent solutions to (2.34) are given by

f (±)
ω =

1

1 ± iν

ρ± iν

ρ

(
ρ− 1

ρ+ 1

)±iν/2

=
1

1 ± iν

ρ± iν

ρ
e±iωr∗ . (2.36)

The normalization in (2.36) was chosen so that, near the horizon,

f (±)
ω ∼ e±iωr∗ (ρ ∼ 1), (2.37)

and hence the solutions are written naturally in terms of ingoing (“+” sign) and outgoing

(“−” sign) modes.

2.3 Boundary conditions and cut-offs

Before proceeding with the analysis of the fluctuations of the scalar field X in the BTZ

geometry, it is useful to understand the boundary conditions we want to impose on the

fields. While we are actually interested in the world-sheet theory of the probe string, it is

clear that we can use the usual AdS/CFT rules to understand the boundary conditions;

in the static gauge the induced metric on the string world-sheet inherits the geometric

characteristics of an asymptotically AdS2 spacetime.
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Usually in Lorentzian AdS/CFT one chooses to use normalizable boundary condi-

tions [34] for the modes. However, in the present case, that would correspond to a string

extending all the way to ρ = ∞, which would mean that the mass of the external particle

is infinite and there would be no Brownian motion. So, instead, we have to impose a UV

cut-off10 near the boundary to make the mass finite. Specifically, we implement this by

means of a Neumann boundary condition ∂rX = 0 at the cut-off surface11

ρ = ρc ≫ 1, or r = rc ≡ rHρc. (2.38)

The relation between the UV cut-off ρ = ρc and the mass m of the external particle is

easily computed from the tension of the string:

m =
1

2πα′

∫ rc

rH

dr
√
gtt grr =

rc − rH
2πα′

=
ℓ2 (ρc − 1)

α′β
≈ ℓ2 ρc

α′β
. (2.39)

Setting

fω(ρ) = A
[
f (+)

ω (ρ) +Bf (−)
ω (ρ)

]
, (2.40)

with constants A and B, we obtain, on implementing the Neumann boundary condition

∂ρfω|ρ=ρc = 0,

B =
1 − iν

1 + iν

1 + iρcν

1 − iρcν

(
ρc − 1

ρc + 1

)iν

≡ eiθω . (2.41)

Note that this is a pure phase. This in particular means that, in the near-horizon region

r ∼ rH , we have, because of (2.37),

X(t, r) = fω e
−iωt ∼ e−iω(t−r∗) + eiθω e−iω(t+r∗). (2.42)

The first term is a mode which is outgoing at the horizon, while the second term is a mode

reflected at ρ = ρc and falling back into the horizon, with phase shift eiθω . The fact that

the outgoing and ingoing modes have the same amplitude means that the AdS black hole,

which Hawking radiates, can be in thermal equilibrium at temperature T [35].

To regulate the theory, we need to introduce another cut-off near the horizon ρ = 1.

Specifically, we cut off the geometry by putting an IR cut-off (“stretched horizon”) at ρs

ρs = 1 + 2 ǫ, ǫ≪ 1. (2.43)

If we impose a Neumann boundary condition12 at ρs, we have, just as (2.41),

B =
1 − iν

1 + iν

1 + i(1 + 2ǫ)ν

1 − i(1 + 2ǫ)ν
ǫiν ≈ ǫiν = e−iν log(1/ǫ). (2.44)

10We use the terms “UV” and “IR” with respect to the boundary energy. In this terminology, in the

bulk, UV means near the boundary and IR means near the horizon.
11In the AdS/QCD context, one can think of the cut-off being determined by the location of the flavour

brane, whose purpose again is to introduce dynamical (and therefore finite mass) quarks into the field

theory.
12One could also take a Dirichlet boundary condition, but in the ǫ → 0 limit this would not make a

difference.
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Figure 2. Boundary conditions at infinity and horizon. First, the UV boundary condition (2.41)

fixes argB to lie, say, on the red line; at this point the possible values of ν are continuous. Further

imposing the IR boundary condition (2.44) makes the possible values of ν discrete (black dots).

If we require (2.41) only, then we determine B as a function of ν, but at this point ν can

take any value and is continuous. If ǫ ≪ 1, further requiring (2.44) effectively makes the

possible values of ν discrete, and the discreteness is given by ∆ν = 2π/ log(1/ǫ) ≪ 1; see

figure 2. In terms of the frequency ω, the discreteness is

∆ω =
4π2

β log(1/ǫ)
. (2.45)

In other words, we have the following density of states:

D(ω) =
1

∆ω
=
β log(1/ǫ)

4π2
. (2.46)

All we have achieved by putting the regulator near the horizon is to discretize the

continuum spectrum which naturally occurs when considering horizon dynamics.

Having done regularization, we can find a normalized basis of modes and start quan-

tizing X(t, r) by expanding it in those modes. This is standard as in the case of a scalar

field obeying the Klein-Gordon equation; for details we refer the reader to appendix A.

The upshot of the calculation is

X(t, r) =
∑

ω>0

[
aωuω(t, ρ) + a†ωuω(t, ρ)∗

]
, (2.47)

where the summation is over ω discretized according to (2.45). The normalized basis uω is

uω(t, ρ) =

√
α′β

2 ℓ2 ω log(1/ǫ)

[
f (+)

ω (ρ) +B f (−)
ω (ρ)

]
e−iωt, (2.48)

where B is given by (2.41). The expansion coefficients aω satisfy the commutation relations

[aω, aω′ ] = [a†ω, a
†
ω′ ] = 0, [aω, a

†
ω′ ] = δωω′ . (2.49)
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2.4 The boundary-bulk dictionary

Given the behavior of quantum modes on the probe string in the bulk, we can work out the

dynamics of the endpoint, which corresponds to a test quark in the thermal CFT plasma.

To understand the precise dictionary we look at the wave-functions of the world-sheet fields

(X(t, ρ) in the BTZ geometry) in the two interesting regions: (i) near the black hole horizon

and (ii) close to the boundary.

From (2.37), near the horizon (ρ ∼ 1), the expansion (2.47) becomes

X(t, ρ ∼ 1) ≈
∑

ω>0

√
α′ β

2 ℓ2 ω log(1/ǫ)

[(
e−iω(t−r∗) + eiθωe−iω(t+r∗)

)
aω + h.c.

]
. (2.50)

We see that the operators aω are directly related to the amplitude for the outgoing modes,

e−iω(t−r∗), near the horizon. On the other hand, at the UV cut-off ρ = ρc, which we have

chosen to be the location of the regularized boundary, (2.47) becomes

x(t) ≡ X(t, ρc) =
∑

ω>0

√
2α′ β

ℓ2 ω log(1/ǫ)

[
1 − iν

1 − iρcν

(
ρc − 1

ρc + 1

)iν/2

e−iωt aω + h.c.

]
(2.51)

This we will interpret as the position of the external particle (test quark) in the boundary

theory. Here, the operators aω are related to the Fourier coefficients of x(t).

Using the above relation between (2.50) and (2.51), one can predict the correlators

for the outgoing modes near the horizon, 〈aω1a
†
ω2 . . .〉 etc., from the boundary correlators

〈x(t1)x(t2) . . .〉 in field theory. In particular, if we would be able to make a very precise

measurement of Brownian motion in field theory, we could in principle predict the precise

state of the radiation that comes out of the black hole. In this way, we can learn about

the physics of quantum black holes in the bulk from the boundary data. This of course

requires us to compute the correlation function for the test particle’s position in a strongly

coupled medium, which is a difficult task that we will not undertake here.

However, at the semiclassical level, we can utilize this dictionary to rather go from

the bulk to the boundary and learn about the boundary Brownian motion from the bulk

data. This is possible because, semiclassically, the state of the outgoing modes near the

horizon is given by the usual Hawking radiation. As argued in [36, 37], the modes on the

string world-sheet which impinges on the black hole horizon are thermally excited with

a black-body spectrum determined by the Hawking temperature. The quickest way to

see this is to note that one can view our analysis of the fluctuations of the string world-

sheet (2.27) as studying the dynamics of massless, free scalars in a two dimensional black

hole background.13 Standard quantization of quantum fields in curved spacetime [38] will

lead to the modes of the fields XI being thermally excited at the Hawking temperature

of this induced world-sheet geometry which is the same as that for the BTZ black hole.

In particular, it follows that the outgoing mode correlators are determined by the thermal

13The induced metric on the string world-sheet clearly has a horizon and is an asymptotically AdS2

spacetime.
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density matrix

ρ0 =
e−βH

Tr(e−βH)
, H =

∑

ω>0

ω a†ωaω. (2.52)

Note that, as we discussed above (2.26), here we are ignoring the interaction of the string

with the thermal gas of closed strings in the bulk (rH < r < rc) of the black hole back-

ground. Namely, we regard the above density matrix (2.52) as solely due to the interaction

with the horizon. However, even if we took into account the weak interaction with the

thermal gas of closed strings, the density matrix would still be given with very good accu-

racy by (2.52) because, at each value of r, the thermal gas is in thermal equilibrium at the

local Hawking temperature and so is the string.

As long as we stay in the semi-classical approximation we can use the observations

mentioned above to go from the bulk to the boundary and derive the Brownian motion of

the external particle in the field theory. That is, instead of using the boundary field theory

to compute the correlation function of the quantum operators a and a†, we can use the

fact that these correlators are determined by the thermal physics of black holes and utilize

them to compute the boundary correlation functions. In particular, we propose to use the

knowledge (2.52) about the outgoing mode correlators in the bulk, to predict the nature

of Brownian motion that the external particle on the boundary undergoes. Thus by using

the standard physics of black holes we will be able to determine the functions γ(t), κ(t)

appearing in the Langevin equation (2.8).

3 Hawking radiation and Brownian motion

In the previous section, we used the AdS/CFT correspondence to set-up a dictionary

translating the information about the boundary Brownian particle into corresponding data

regarding the outgoing modes (the world-sheet oscillators aI and a†I of the fluctuations XI)

in the bulk. In this section, we explicitly derive the correlation function for the position

of the test particle. We assume that the outgoing modes are the usual Hawking radiation

with the density matrix (2.52) and derive the result that the endpoint at ρ = ρc ≫ 1 indeed

undergoes a Brownian motion.

3.1 Brownian motion of the boundary endpoint

Let us now consider the motion of the endpoint of the string at ρ = ρc ≫ 1. We will

determine the behavior by computing its displacement squared, which corresponds to (2.3).

In the canonical ensemble specified by the density matrix (2.52), the relevant expectation

values are given by the Bose-Einstein distribution:

〈a†ω aω′〉 = Tr
(
ρ0 a

†
ω aω′

)
=

δω ω′

eβω − 1
. (3.1)
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Using this and (2.51), we compute

〈x(t)x(0)〉 = 〈X(t, ρc)X(0, ρc)〉 =
2α′ β

ℓ2 log(1/ǫ)

∑

ω>0

1

ω

1 + ν2

1 + ρ2
cν

2

(
2 cos ωt

eβω − 1
+ e−iωt

)

=
α′ β2

2π2 ℓ2

∫ ∞

0

dω

ω

1 + ν2

1 + ρ2
cν

2

(
2 cosωt

eβω − 1
+ e−iωt

)
. (3.2)

We are using the rescaled frequency ν defined in (2.35) throughout to avoid clutter. In

going to the second line, we utilized the density of states determined in (2.45) to rewrite

the sum as an integral. From this, we compute the displacement of the endpoint as:

s2(t) ≡ 〈[x(t) − x(0)]2〉 =
2α′β2

π2ℓ2

∫ ∞

0

dω

ω

1 + ν2

1 + ρ2
cν

2
coth

βω

2
sin2 ωt

2
. (3.3)

This has a logarithmic UV divergence. Because this divergence is coming from the zero

point energy (the e−iωt term in (3.2)), which exists even at zero temperature, we simply reg-

ularize it by normal ordering the a, a† oscillators (:aωa
†
ω : ≡ :a†ωaω :). When so regularized,

the correlator (3.2) becomes

〈:x(t)x(0) :〉 =
α′β2

π2 ℓ2

∫ ∞

0

dω

ω

1 + ν2

1 + ρ2
cν

2

cosωt

eβω − 1
, (3.4)

and the displacement squared (3.3) becomes14,15

s2reg(t) ≡ 〈: [x(t) − x(0)]2 :〉 =
4α′ β2

π2 ℓ2

∫ ∞

0

dω

ω

1 + ν2

1 + ρ2
cν

2

sin2 ωt
2

eβω − 1
. (3.5)

We analytically evaluate this integral in appendix B. For the present purposes we will only

record the result for ρc ≫ 1, which is all that is relevant for the physics of the boundary

field theory. We find the following behavior:

s2reg(t) ≈





α′

ℓ2 ρc
t2 ≈ T

m
t2 (t ≪ tc),

α′

π ℓ2 T
t (t ≫ tc).

(3.6)

14Note that regularization by normal-ordering does not preserve the KMS relations except in the classical

limit.
15Another way to regularize the correlator is to use the canonical correlator introduced in (4.7). Us-

ing (4.12), one can derive

s2
c(t) ≡ 〈[x(t) − x(0)]; [x(t) − x(0)]〉 =

2α′β2

π2 ℓ2

Z ∞

−∞

dω

ω2

1 + ν2

1 + ρ2
cν2

sin2 ωt

2

=
α′β2

πℓ2

h

(|t|/β) − (1 − ρ−2
c )(1 − e−2π|t|/βρc)

i

.

This is finite and has exactly the same short- and long-time behaviors as in (3.6). Note, however, that

the divergence (3.3) is related to the well-known fact that the fluctuation of the position of a string always

diverges [39].
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So, we observe two regimes, the ballistic and diffusive regimes, exactly as for the standard

Brownian motion (2.3). The crossover time tc is given by

tc ∼ β ρc ∼ α′m

ℓ2 T 2
. (3.7)

In the ballistic regime, t ≪ tc, the coefficient of t2 in (3.6) is exactly the same as (2.3)

determined by the equipartition of energy ẋ ∼
√
T/m. In fact, one can say much more; in

appendix C, we show that, if ρc ≫ 1, the probability distribution f(p) for the “momentum”

p ≡ mẋ of the endpoint is exactly equal to the Maxwell-Boltzmann distribution for non-

relativistic particles,

f(p) ∝ e−βEp , Ep =
p2

2m
. (3.8)

In the diffusive regime, t ≫ tc, we find a diffusion constant (one half of the

coefficient of t)

DAdS3 =
α′

2πℓ2T
. (3.9)

A priori this looks counterintuitive because it is inversely proportional to temperature T

and implies that the random walk becomes more vigorous at lower temperature. However,

this is consistent with the known results for test quarks moving in the thermal N = 4

super Yang-Mills plasma [20–22, 24]. For example, refs. [20, 22] considered a heavy

particle on the boundary moving at a constant speed v under the influence of an external

force. One can compute the friction acting on it from the bulk using the Nambu-Goto

action, where a string is moving at velocity v, trailing along the boundary. It is easy to

generalize their computation to AdSd with general d, the result being16

ṗ = − 8π ℓ2 T 2

(d− 1)2 α′

v

(1 − v2)2/(d−1)
, p =

mv√
1 − v2

. (3.10)

In the non-relativistic limit, v ≪ 1, this means that the friction constant is

γAdSd
0 =

8π ℓ2 T 2

(d− 1)2 α′m
. (3.11)

If we use the Sutherland-Einstein relation (2.6),17 we obtain the diffusion constant

DAdSd
=

(d− 1)2 α′

8π ℓ2 T
, (3.12)

which agrees with (3.9) for d = 3.

One can give an intuitive explanation for the reason why the diffusion constant is

inversely proportional to T from the boundary viewpoint of Brownian motion. The random

16Although this is a straightforward generalization of [20, 22] and the general formalism has been laid

out in [23], it seems to us that this result has not appeared explicitly in the literature.
17Note that, as explained around (2.7), the relation (2.6) does not depend on d.
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walk behavior of Brownian motion is due to frequent collisions of the Brownian particle with

the fluid particles. In particular, after n steps (collisions), the distance s that a random-

walk particle covers scales as
√
nLmfp, where the mean free path Lmfp is the typical length

traveled between the collisions, i.e., it provides a scale for the system. For the thermal

system under consideration we have, Lmfp ∼ 1/T , because this is the only scale available in

a CFT at temperature T .18 After n collisions, the time elapsed is given by t ∼ n/T , since

the time between collisions is also given by Lmfp ∼ 1/T . So, putting things together, we

have s ∼
√
tT · 1/T =

√
t/T , namely, s2 ∼ t/T which is exactly what we infer from (3.12).

From the bulk point of view, on the other hand, one can give a physical explanation

for D ∼ 1/T as follows. Near the horizon (ρ ∼ 1), the Nambu-Goto action (2.27) becomes

SNG ≈ π ℓ2 T 2

α′

∫
dt dr∗

[
(∂tX)2 − (∂r∗X)2

]
. (3.13)

This is the same as the action for a string in flat space, with α′ replaced by α′
eff =

α′/(4π2ℓ2T 2). This means that the size of the fluctuations in X2 is proportional to

α′
eff ∼ T−2. The Boltzmann factor of Hawking radiation gives an additional factor of

1/(eβ ω − 1) which scales as T at low frequency. Altogether, near the horizon, the fluctu-

ations scale with temperature as X2 ∼ T−1. When a fluctuation propagates to ρ = ρc, a

greybody factor damps the fluctuation. However, as one can see from (2.51), the damping

is O(1) for very small frequency. This leads to x2 = X(ρ = ρc)
2 being ∼ T−1. The rea-

son why very low frequency modes can reach ρ = ρc undamped is that X is an isometry

direction and very low frequency X modes can propagate at almost no cost in energy.

A natural question to ask is what happens to this T−1 scaling as T → 0, as we expect

that the endpoint should not fluctuate at T = 0. This can be understood by realizing

that for a mode to propagate to ρ = ρc undamped, it should be the lightest mode in the

problem. In particular, only modes whose frequencies are lower than the thermal scale

(which goes to zero as T → 0) can propagate without damping. Translating to real time

dynamics, this means that one needs to wait until t ∼ tc to see the diffusive regime; but

since tc ∝ T−2 → ∞ as T → 0 we never enter that regime and the motion is always ballistic

as expected.

Thus, we have demonstrated that the endpoint of the string at ρ = ρc indeed behaves

like a Brownian particle; it shows ballistic and diffusive regimes, just as for the usual

Brownian motion. We would now like to understand the Langevin equation from the bulk

perspective. As we will see below, the Langevin equation governing this Brownian motion

turns out to be not of the simplest type (2.1) and (2.2), but rather the generalized one (2.8)

indicating that the precise nature of the random kick encountered by the Brownian particle

depends on the past history of its trajectory.

18The precise value of the Lmfp depends on the strength of the field theory coupling, but the temperature

dependence follows via dimensional analysis. In fact, in appendix D, we estimate the mean free path time

to be tmfp ∼ 1/(
√

λ T ), where λ ∼ ℓ4/α′2. If the plasma constituents are moving at the speed of light, this

means that Lmfp ∼ 1/(
√

λ T ). With this value of Lmfp, we can even recover the λ dependence of (3.12).
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3.2 Forced motion and the holographic Langevin equation

As we discussed in subsection 2.1, the generalized Langevin equation (2.8) has two func-

tional parameters: the memory kernel γ(t) and the auto-correlation function κ(t), related to

the dissipative and stochastic components, respectively. We would like to determine these

functions from the holographic viewpoint for the probe string in the black hole background.

In order to do so, we will first determine γ(t), or equivalently µ(ω). Once we know µ(ω),

we can compute κ(ω) by using equation (2.19) and the 〈xx〉 correlator (3.2) (or (3.4)).

We first turn to the determination of µ(ω). Consider applying an external force on

the Brownian particle as in (2.14); from the response to this force we can read off µ(ω)

using (2.15). So the natural question is what external force is to be applied to the string

endpoint. As in the AdS/QCD set-ups, we can realize such forced motion by placing a

“flavor” D-brane at the UV cut-off ρ = ρc and by turning on world-volume electric field

on it. Since the endpoint of the string is charged, this will exert the desired force on the

Brownian particle.

So, let us consider the Nambu-Goto action (2.27) in the general metric (2.26), and add

to it the following boundary term

Sbdy =

∮
A(x,X), (3.14)

which corresponds to turning on world-volume field on the flavor D-brane (which is placed

at the UV cut-off ρc). Here, A(x,X) is a 1-form defined on the flavor D-brane world-

volume. We again work in the gauge where the world-sheet coordinates are identified with

the spacetime coordinates xµ = t, r. We have XI = XI(x) and

Sbdy =

∮
[At(x,X) +AI(x,X) ẊI ] dt, (3.15)

where t is taken to be the coordinate along the boundary as before (or equivalently, the

boundary is at r = const.). The equation of motion one obtains for the total action

S
(2)
NG + Sbdy at the boundary is

√
−g̃ nµGIJ ∂µX

J − 2πα′
(
FIt + FIJ ∂tX

J
)

= 0, (3.16)

where g̃µν is the induced metric on the boundary, nµ is the outward-pointing unit normal

to the boundary, and FIt = ∂IAt − ∂tAI , FIJ = ∂IAJ − ∂JAI .

Returning to the simple setting of the BTZ geometry (2.29), the equation of motion

for the string in the presence of this additional gauge field is

ρ2(ρ2 − 1) ∂ρX =
2πα′ ℓ4

r3H
FXt at ρ = ρc. (3.17)

For the world-volume field FXt we choose an oscillating electric field with frequency ω:

FXt ≡ E = E0 e
−iωt, (3.18)
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motivated by (2.14). We now want to compute how the string, in particular its endpoint

X(t, ρc) = x(t), moves under the influence of this external force in order to compute the

admittance µ(ω).

As before, the solution to the bulk equation of motion can be written as a linear

combination of the modes f
(±)
ω (ρ):

X(t, ρ) =
[
A′f (+)

ω (ρ) +B′f (−)
ω (ρ)

]
e−iωt. (3.19)

To determine the coefficients A′, B′, we need to impose a boundary condition at the horizon,

in addition to the boundary condition (3.17) at ρ = ρc. Effectively all that the external

field has done was to modify the Neumann boundary condition, which we imposed earlier

on the cut-off surface, to a mixed boundary condition.

In the semiclassical approximation, the boundary condition near the horizon is such

that outgoing modes are always thermally excited because of Hawking radiation, while the

ingoing modes can be arbitrary.19 From (2.37), the coefficients A′ and B′ correspond to

outgoing and ingoing modes respectively. Therefore, the boundary condition at the horizon

is that A′ is thermally excited. However, because the radiation is random, the phase of A′

takes random values and, on average, A′ vanishes: 〈A′〉 = 0. Recall that it is such averaged

quantities that we are interested in; the admittance µ(ω) is obtained by suitably averaging

over the ensemble, cf. (2.15).

Requiring the boundary condition (3.17), with electric field (3.18) at ρ = ρc and the

condition that 〈A′〉 = 0, we determine the average values of A′, B′ to be

〈A′〉 = 0, 〈B′〉 =
2iπα′ ℓ4

r3H

1 − iν

ν (1 − iρcν)

(
ρc − 1

ρc + 1

)iν/2

E0 . (3.20)

From this we infer that the average value of X at the UV cut-off ρ = ρc is

〈x(t)〉 = 〈X(t, ρc)〉 =
2iπα′ ℓ4

r3H

1 − iν/ρc

ν (1 − iρcν)
E0 e

−iωt , (3.21)

which in turn implies that the average value of the momentum p = mẋ is

〈p(t)〉 =
2πα′ℓ4mω

r3H

1 − iν/ρc

ν (1 − iρcν)
E0 e

−iωt =
α′β2m

2π ℓ2
1 − iν/ρc

1 − iρcν
E0 e

−iωt . (3.22)

Comparing this with (2.15), we obtain the admittance

µ(ω) =
1

γ[ω] − iω
=
α′β2m

2π ℓ2
1 − iν/ρc

1 − iρcν
. (3.23)

A simple check on the consistency of these computations is to compute the energy flow

along the string falling into the horizon, which must be equal to the work done by the

external force. For the theory (2.27), the stress-energy tensor is

T µ
ν =

1

2π α′

(
gµκ δλ

ν − 1

2
δµ
ν g

κλ

)
GIJ ∂κX

I∂λX
J . (3.24)

19If one ignores the thermal excitations of the outgoing modes and sets them to zero, this boundary

condition becomes the so-called purely ingoing boundary condition.
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Because we are working in static gauge this world-sheet stress-energy tensor measures the

spacetime energy. In the case of the BTZ spacetime (2.29), the flow of energy along the r

direction is

√−g T r
t =

r2 (r2 − r2H)

2π α′ ℓ4
Re[∂rX ∂tX] =

r3H ρ2(ρ2 − 1)

2π α′ ℓ4
Re[∂ρX∂tX]. (3.25)

Here, we replaced ∂κX∂λX → Re[∂κX∂λX] so as to work directly with complex fields.

Consider the solution for X(t, ρ) as in (3.19) with the coefficients A′, B′ given by the

average value (3.20) (we ignore thermal fluctuations in replacing the amplitudes by their

average). Then, (3.25) evaluates to20

√−g T r
t =

2π α′ ℓ2E2
0

r2H

1 + ν2

1 + ρ2
c ν

2
. (3.26)

On the other hand, the work done per unit time (namely, power) by the electric field E

acting on the endpoint at X(t, ρc) is

Re[E ∂tX(t, ρc)] , (3.27)

where E is given by (3.18). For X(t, ρ) in (3.19), it is easy to check that this equals (3.26).

Hence indeed as expected, the work done by the external force is transmitted down the

string into the black hole horizon and the energy is thus dissipated away.

3.3 The holographic auto-correlation function and time scales

We now turn to the computation of the random force correlator, κ(ω). From the 〈xx〉
correlator (3.4), we can compute the 〈p p〉 correlator as

〈:p(t) p(0) :〉 = −m2 ∂2
t 〈:x(t)x(0) :〉 =

α′ β2m2

π2 ℓ2

∫ ∞

0
dω

1 + ν2

1 + ρ2
cν

2

ω cosωt

eβω − 1

=
α′ βm2

π ℓ2

∫ ∞

−∞

dω

2π

1 + ν2

1 + ρ2
cν

2

β|ω| e−iωt

eβ|ω| − 1
. (3.28)

To obtain the power spectrum defined in (2.16) for the momentum p we Fourier transform

in time t to obtain

In
p (ω) =

α′βm2

πℓ2
1 + ν2

1 + ρ2
cν

2

β|ω|
eβ|ω| − 1

. (3.29)

Here, the superscript “n” is for remembering that this power spectrum was computed using

the normal ordered correlator 〈:p p :〉. Then we can exploit the relation (2.19) between

the power spectrum for the auto-correlation function and the momentum spectrum and

the previously derived expression for µ(ω), (3.23), to obtain the power spectrum for the

random force R, which is nothing but the random force correlator κn(ω):

κn(ω) = In
R(ω) =

In
p (ω)

|µ(ω)|2 =
4πℓ2

α′β3

1 + ν2

1 + ρ2
cν

2

β|ω|
eβ|ω| − 1

. (3.30)

20The plus sign is because t is a lower index. If we raise t, this will have a minus sign, indicating a flow

of energy toward the direction of the horizon (smaller r).
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Next, let us compute the physical time scales trelax and tcoll. First, from (3.23), one

can compute the relaxation time trelax defined in (2.20) as:

trelax = µ(ω = 0) ∼ α′β2m

ℓ2
. (3.31)

To compute the collision duration time tcoll, we first need the real time auto-correlation

function for the random force 〈RR〉:

κn(t) = 〈:R(t)R(0) :〉 =

∫ ∞

−∞

dω

2π
In
R(ω) e−iωt. (3.32)

By using the explicit form (3.30), we obtain

κn(t) =
2 ℓ2

α′ β4

[
ρ2

c h1(t, β) − (ρ2
c − 1)h2(t, β, ρc)

]
, (3.33)

where we defined the functions

h1(t, β) ≡
∫ ∞

−∞
dx

|x| e−itx/β

e|x| − 1
, h2(t, β, ρc) ≡

∫ ∞

−∞
dx

|x| e−itx/β

(1 + ( x
2πρc

)2)(e|x| − 1)
. (3.34)

For ρc ≫ 1, h1 and h2 are almost equal; if x≪ ρc, we can approximate 1 + ( x
2πρc

)2 in the

integrand of h2 by 1 while, if x & ρc ≫ 1, the integrand is almost vanishing because of the

Bose-Einstein like factor 1/(e|x| − 1). Therefore, the RR correlator evaluates to

κn(t) ≈ 2ℓ2

α′β4
h1(t, β) =

2ℓ2

α′β4

[(
β

t

)2

− π2

sinh2(πt/β)

]
. (3.35)

This function has a support of width of order β around t = 0. Therefore, using (2.22) we

obtain the collision duration time

tcoll ∼ β =
1

T
, (3.36)

The T dependence is as it should be from dimensional analysis in a CFT at temperature

T , but the fact that this is independent of the ’t Hooft coupling λ is not trivial.

The ratio of the two time scales is given by

trelax
tcoll

∼ α′m

ℓ2T
∼ m√

λT
, (3.37)

where we related α′/ℓ2 to the boundary ’t Hooft coupling21 by using the relation ℓ4/α′2 ∼
λ [20, 24]. In the weak or moderate coupling regime, λ . 1, we can make this ratio large

by considering a Brownian particle with m ≫ T and obtain the standard Brownian motion

as explained below (2.23); the Brownian particle becomes thermalized only after numerous

collisions with fluid particles. In the strong coupling regime, λ ≫ 1, however, this is not

the case and, in order to have the standard picture, we have to consider a much heavier

21Strictly speaking, this is only the ’t Hooft coupling λ in the standard AdS5 case, but we will use the

same terminology to denote ℓ4/α′2 for other values of d as well.
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Brownian particle with mass m ≫
√
λ T , which is always possible. On the other hand, if

T ≪ m ≪
√
λT , the situation is totally different. Although the effect of a collision with

a single fluid particle (with energy ∼ T ) is small, because the Brownian particle interacts

with many fluid particles at the same time, it can become thermalized in a time much

shorter than the time it takes for a single process of collision. To make this claim more

quantitative, we estimate in appendix D the average time tmfp between collisions. The

contribution that a single collision makes to the random force R(t) has width tcoll. R(t)

consists of many such contributions, with the typical distance in time between two collisions

being tmfp. Determining tmfp is not entirely straightforward, as it requires us to analyze the

four-point correlation function of the random force, and we only find a non-trivial answer

once we take the fourth order correction to the Nambu-Goto action into account. As a

result, tmfp is suppressed by a factor of 1/
√
λ compared to tcoll, the final result being

tmfp ∼ 1√
λ T

. (3.38)

At weak coupling λ ≪ 1, we have tmfp ≫ tcoll and the standard kinetic theory picture,

where the Brownian particle is occasionally hit by a fluid particle, is valid. On the other

hand, at strong coupling λ≫ 1, we have tmfp ≪ tcoll, namely, many collisions occur within

the time scale for a single collision process to take place.22 This supports the picture above

that the Brownian particle interacts with many fluid particles at the same time.

4 Fluctuation-dissipation theorem

Thus far we have seen how the string probe in the bulk geometry holographically captures

the Brownian motion of an external test particle introduced in the boundary CFT plasma.

As we have seen explicitly, one can derive the Langevin equation for the string endpoint by

tracing back the information about the part of the string that is touching the black hole and

hence gets thermally excited due to the outgoing Hawking quanta. One of the hallmarks of

non-equilibrium statistical mechanics is the fluctuation-dissipation theorem [32, 40] which

relates the observables in the system perturbed infinitesimally away from equilibrium to

equilibrium quantities. We now turn to show that not only are the results we derived in

section 3 consistent with the fluctuation-dissipation theorem, but that we can in fact obtain

this result directly from the gravity side.

4.1 Linear response theory

We begin our discussion of the fluctuation-dissipation theorem with a lightning review of

linear response theory [32, 40].

Consider a system whose unperturbed Hamiltonian is given by H. Assume that, in

the infinite past t = −∞, the system was in an equilibrium state with the density matrix

ρe =
e−βH

tr e−βH
. (4.1)

22Perhaps the term “mean free path time” is not an appropriate one in this regime where a second

collision takes place before the first one ends, and thus the particle is never freely moving. However, there

being no other choice, we will continue to use this term in the strongly coupled regime.
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Now perturb the system by adding an external force K(t) conjugate to a quantity A. The

total Hamiltonian is

Htot = H +Hext(t) = H −AK(t). (4.2)

Under this perturbation, the change in another quantity B is given, to the first order in

the perturbation Hext, by the so-called Kubo formula:

∆B(t) =

∫ t

−∞
dt′K(t′)φBA(t− t′), φBA(t) ≡ −i〈[A(0), B(t)]〉, (4.3)

where we defined 〈O〉 ≡ tr(ρeO) and O(t) = eiHtOe−iHt. The function φBA(t) is called

the response function.

If we consider a periodic force with frequency ω,

K(t) = K0 e
−iωt, (4.4)

then (4.3) gives the following change in B:

∆B(t) = µBA(ω)K0 e
−iωt, (4.5)

where the admittance µBA(ω) is given by

µBA(ω) =

∫ ∞

0
dt φBA(t) eiωt =

1

i

∫ ∞

0
dt 〈[A(0), B(t)]〉eiωt = β

∫ ∞

0
dt 〈Ȧ(0);B(t)〉eiωt,

(4.6)

and with the canonical correlator 〈X;Y 〉 defined by

〈X;Y 〉 =
1

β

∫ β

0
dλ 〈eλHXe−λHY 〉 =

1

β

∫ β

0
dλ 〈X(−iλ)Y 〉 , (4.7)

which satisfies the following properties

〈X(0);Y (t)〉 = 〈Y (t);X(0)〉 = 〈Y (0);X(−t)〉. (4.8)

The relation (4.6) is called the fluctuation-dissipation theorem, because the right hand side

is the fluctuation (correlator) in the equilibrium state ρe, while the left hand side yields

the admittance which is related to the dissipation (friction).

In the case of Brownian motion, we can take A = x and Hext = −xK(t), where K(t)

is identified with the external force appearing in the Langevin equation (2.8). Then, for

B = p, we obtain the admittance

µ(ω) =
β

m

∫ ∞

0
dt 〈p(0); p(t)〉 eiωt. (4.9)

Due to the relations (4.8), this implies

2Reµ(ω) =
β

m

∫ ∞

−∞
dt 〈p(0); p(t)〉 eiωt =

β

m
Ic
p(ω), (4.10)
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where Ic
p(ω) is the power spectrum for p defined using the canonical correlator. From this,

using the relation (2.19), one can derive a more direct relation between the friction and

random force as

2Re γ(ω) =
β

m
Ic
R(ω) =

β

m
κc(ω), (4.11)

which is sometimes called the second fluctuation-dissipation theorem, in contrast with (4.9)

or (4.10) which is sometimes called the first fluctuation-dissipation theorem [32, 40].

4.2 Explicit check of fluctuation-dissipation theorem

The fluctuation-dissipation relations (4.9), (4.10), and (4.11) for Brownian motion were

derived from the field theory viewpoint and are not immediately obvious from the bulk

viewpoint. Here, let us explicitly check that they indeed hold using the explicit results

obtained from the bulk in section 3.

Similarly to (3.2) or (3.4), we can compute the canonical correlator for x as

〈x(0);x(t)〉 =
α′β

πℓ2

∫ ∞

−∞

dω

2π

1

ω2

1 + ν2

1 + ρ2
cν

2
e−iωt. (4.12)

Because p = mẋ, this implies the following canonical correlator for p:

〈p(0); p(t)〉 =
α′βm2

πℓ2

∫ ∞

−∞

dω

2π

1 + ν2

1 + ρ2
cν

2
e−iωt. (4.13)

This means that the power spectrum for p is

Ic
p(ω) =

α′βm2

πℓ2
1 + ν2

1 + ρ2
cν

2
. (4.14)

On the other hand, from (3.23), we immediately obtain

2Reµ(ω) =
α′β2m

πℓ2
1 + ν2

1 + ρ2
cν

2
. (4.15)

By comparing (4.14) and (4.15), we see that the fluctuation-dissipation theorem of the

form (4.10) indeed holds. This also implies the second fluctuation-dissipation theo-

rem (4.11).

These relations can be regarded as providing evidence that the motion of the string

endpoint in the bulk can be described by a generalized Langevin equation. Note, in particu-

lar, that the way we derived the fluctuation (correlator) and the way we derived dissipation

(admittance) were very different; for the former, we assumed thermal Hawking radiation

near the horizon and measured the position of the string endpoint at the UV cut-off while,

for the latter, we considered forced motion imposing a boundary condition at the horizon

which was essentially the purely ingoing boundary condition. In the next subsection we de-

scribe how these two quantities are related directly from the bulk point of view. However,

it would be desirable to have a more intuitive physical understanding of why this should

be the case.
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4.3 Bulk proof of fluctuation-dissipation theorem

In subsection 4.2, we demonstrated that the fluctuation-dissipation relations holds for the

special case of string probes in the BTZ spacetime by an explicit bulk computation. We

now prove that the fluctuation-dissipation relations hold more generally, again from the

bulk viewpoint.

Consider a string probe in the d-dimensional metric (2.26). We would like to turn

on an electric field FIt = EI(t) on the flavor D-brane at r = rc and consider the resulting

position xI(t) = XI(t, rc) of the string endpoint in response to it. If we take At = EI(t)X
I ,

AI = 0, then the boundary action, (3.15), can be written as

Sbdy =

∫
dtEI(t)X

I =

∫
dt dr δ(r − rc)EI(t)X

I . (4.16)

This can be regarded a source term for the field XI ; upon inclusion of this term, the

equation of motion (2.28) is changed to

∇µ
[
GIJ(x) ∂µX

I(x)
]

= − 2πα′

√−g δ(r − rc)EI(t). (4.17)

As is standard, we can solve this by using the retarded propagator

DIJ
ret(t, r|t′, r′) = θ(t− t′)〈[XI (t, r),XJ (t′, r′)]〉, (4.18)

where XI(t, r) satisfies the equation of motion (2.28) (or equivalently (4.17) with the right

hand set to zero) and can be expanded in modes as in (2.47). Namely,

XI(t, r) =
∑

ω>0

[uI
ω(t, r)aω + uI

ω(t, r)∗a†ω],

[aω, aω′ ] = [a†ω, a
†
ω′ ] = 0, [aω, a

†
ω′ ] = δωω′ ,

(4.19)

where {uI
ω(t, r)} is a normalized basis of solutions to (2.28). Note that, with (4.19), the

commutator appearing in (4.18) is actually a c-number and DIJ
ret is independent of the state

with respect to which we take the expectation value. DIJ
ret can be shown to satisfy

∇µ
[
GIJ(x) ∂µD

JK
ret (t, r|t′, r′)

]
= i

2πα′

√−g δ
K
I δ(t− t′) δ(r − r′). (4.20)

Therefore, the solution to (4.17) can be written, using DIJ
ret, as

XI(t, r) = i

∫ ∞

−∞
dt′DIJ

ret(t, r|t′, rc)EJ(t′)

= i

∫ ∞

0
dt′′ 〈[XI(t, r),XJ (t− t′′, rc)]〉EJ(t− t′′).

(4.21)

By setting r = rc, we obtain the position xI(t) = XI(t, rc) of the string endpoint in

response to the external force EI(t) as:

xI(t) = i

∫ ∞

0
dt′′ 〈[xI(t), xJ (t− t′′)]〉EJ(t− t′′). (4.22)
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If the fluctuation-dissipation theorem is to hold, this must be equal to the xI(t) ob-

tained by using the Kubo formula (4.3), identifying xI(t) with the position of the Brownian

particle in the boundary. From the action (4.16), one reads off the external force appearing

in (4.2) to be AK = EJx
J . Then, by applying the Kubo formula (4.3) for B = xI ,

xI(t) = −i
∫ t

−∞
dt′EJ(t′)〈[xJ(0), xI (t− t′)]〉

= i

∫ ∞

0
dt′′ 〈[xI(t′′), xJ (0)]〉EJ(t− t′′),

(4.23)

where t′′ = t−t′. Because the system is stationary, the expectation value is invariant under

shift of time: 〈[xI(t′′), xJ (0)]〉 = 〈[xI(t), xJ(t− t′′)]〉. Therefore, the bulk response (4.22)

is the same as the expression (4.23) computed from the boundary Kubo formula. This

implies that the fluctuation-dissipation relations (4.9), (4.10), (4.11) indeed hold.

5 General dimensions

Thus far we have considered the case of d = 3 dimensional asymptotically AdS spacetimes

only, which had the advantage that the wave equation for the modes of the string was

exactly solvable. For general d, this is no longer possible and we have to use approximate

methods. In this section, we employ the low frequency approximation ω ≪ T and briefly

summarize how some of the results of the previous sections get modified in the case of

asymptotically AdSd spacetimes with general d.

The starting point is the metric (2.24), with Hawking temperature given in (2.25).

The tortoise coordinate r∗ is defined via

dr∗ =
ℓ2

r2 h(r)
dr. (5.1)

If we define η = exp[2πi/(d − 1)], an explicit expression for the tortoise coordinate is

r∗ =
d−2∑

k=0

ℓ2

(d− 1) ηk rH
log

(
r

rH
− ηk

)
. (5.2)

The term with k = 0 shows that near the horizon, r∗ ∼ ℓ2

(d−1) rH
log

(
r

rH
−1

)
, and from (5.1)

we also see that the behavior near infinity is

r∗ ∼ −ℓ
2

r
, r → ∞. (5.3)

The generalization of (2.32) to arbitrary d reads

− ∂2
tX +

h(r)

ℓ4
∂r[r

4 h(r) ∂rX] = 0. (5.4)

As before, we will exploit the translational invariance along t to decompose modes in plane

waves; for convenience consider solutions of the form

X(t, r) = e−iωt r−1 Φω(r) , (5.5)
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from which it follows that the functions Φω(r) satisfy the following equation

[
∂2

∂r2∗
+ ω2 − V (r)

]
Φω(r) = 0 , (5.6)

with

V (r) =
1

ℓ4
r2 h(r)

[
2h(r) + r h′(r)

]
. (5.7)

The wave equation (5.6) can be thought of as a time-independent Schrödinger equation for

a particle moving in potential V (r).

As in section 3, we want to exploit the semiclassical physics of Hawking radiation to

learn about the behaviour of the string endpoint on the boundary. Once again it is worth

noting that the dynamics of the scalar field X(t, r) is similar to a minimally coupled scalar

field propagating in an asymptotically AdS2 spacetime with an event horizon. We would

like to compute the admittance for the Langevin equation in this case.

In order to redo the computation that led to (3.23) we need to find the solution of

the wave equation (5.6) which is purely ingoing at the horizon r = rH . Let us denote this

particular solution of the wave equation by X−
ω (r). It is not possible to obtain this for

general frequencies ω and hence we employ a low frequency approximation ω ≪ T and

use the so-called matching technique. Here, we only write down the final result of the

computations, relegating the details to appendix E. The solution that is purely ingoing at

the horizon behaves near infinity as

X−
ω (ρ) = C+X+

C (ρ) +C−X−
C (ρ), (5.8)

where

C± =
1

2

(
1 ± 1

ν2
+ i b ν

)
, X±

C (ρ) =

(
1 ∓ iν

ρ

)
e±i ν/ρ. (5.9)

Here, b is a constant independent of ν, whose precise value is not relevant for our purpose.

Also, as before, we defined dimensionless quantities

ρ ≡ r

rH
, ν ≡ ℓ2 ω

rH
. (5.10)

In terms of these, the low frequency condition ω ≪ T reads ν ≪ 1. Actually, this re-

sult (5.8) is valid only to leading order in the ν expansion.

By carefully redoing the calculation in subsection 3.2, one can show that there is the

following relation between the ingoing mode and the admittance µ(ω):

µ(ω) =
1

γ[ω] − iω
= − i (d− 1)2 α′mβ2 ν

8π ℓ2 ρ4
c

X−
ω (ρc)

∂ρcX
−
ω (ρc)

. (5.11)

Using the explicit expression of X−
ω (eqs. (5.9), (5.8)), the final result is

µ(ω) =
i(d− 1)2 α′mβ2

8π ℓ2 ρ2
c ν

[(1 + i b ν) ν ρc − i] ν cos
(

ν
ρc

)
+ i

[
ρc − i ν3 (1 + i b ν)

]
sin

(
ν
ρc

)

(1 + i b ν) ν2 cos
(

ν
ρc

)
+ i sin

(
ν
ρc

) .

(5.12)
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As mentioned above, this result is valid only to leading order in the expansion in ν. For

small ν, the right hand side of (5.12) behaves as

µ(ω) =
(d− 1)2 α′ β2m

8π ℓ2
+ O(ω). (5.13)

For d = 3, this agrees with (3.23) for ν → 0. Furthermore, this agrees with the drag force

result (3.11) for general d, because γ0 = µ[0]−1.

Just as we did for the d = 3 case in subsection 3.1, we could also compute κ(ω) for

general d in the low frequency approximation. However, this is not necessary, because we

can directly obtain κ(ω) from the fluctuation-dissipation theorem (4.11), whose validity we

already demonstrated for all values of d in subsection 4.3.

6 Stretched horizon and Brownian motion

The main philosophy of the membrane paradigm [41] is that, as far as an observer staying

outside a black hole horizon is concerned, physics can be effectively described by assuming

that the objects outside the horizon are interacting with an imaginary membrane, which is

endowed with physical properties, such as temperature and resistance, and is sitting just

outside the mathematical horizon. In section 3, we assumed that the Brownian motion

of the UV endpoint of a string was caused by the boundary condition we impose at the

horizon — all ingoing modes are falling in without being reflected, while the outgoing

modes are always thermally populated. A curious question then is whether this boundary

condition can be reproduced, in the spirit of the membrane paradigm, by postulating some

interaction of the string with a membrane at the stretched horizon just outside the actual

horizon. The interaction necessarily assumes a stochastic character, so it is natural to

expect it to be described by a sort of Langevin equation. For a schematic explanation, see

figure 3. It must be noted that the physics of the stretched horizon has been discussed

in the AdS/CFT context previously in [42–45] and more recently in [46] where there is

a nice discussion regarding the dynamics of the stretched horizon and the universality

of hydrodynamic coefficients. We will now turn to a derivation of the properties of the

stretched horizon in section 6.1 and then proceed to ask whether we can learn anything

about the microscopic structure of the stretched horizon in section 6.2.

6.1 Langevin equation on stretched horizon

Let us consider placing an imaginary “IR brane” near the horizon at ρs = 1+2 ǫ, ǫ≪ 1 and

assume that the string ends on it.23 If we assume that a force is acting on the endpoint,

the equation of motion for the endpoint is, just as in (3.17), given by

− 2 r3H ǫ

π α′ ℓ4
∂ρX|ρs = FX

s , (6.1)

23In reality a string that dips into the black hole will continue merrily past the horizon without any

trouble; the quickest way to see this of course is to pass to coordinates that are regular on the horizon

such as ingoing Eddington-Finkelstein or Kruskal coordinates. Here we are interested in mimicking the

boundary conditions of the black hole and hence will postulate there to be an imaginary boundary in the

IR at ρ = ρs.
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Figure 3. A membrane-paradigm like picture of the Brownian motion. There are friction and

random force acting on the IR endpoint of the string on the stretched horizon, effectively giving

the boundary condition.

where FX
s is the force along the X direction measured with respect to the time t. Note that

there is no term like mẌ on the left hand side, because the endpoint has zero mass, having

zero length. We assume that the force FX
s , just as in the usual Langevin equation (2.8),

has frictional and stochastic components:

FX
s (t) = −

∫ t

−∞
dt′ γs(t− t′) ∂tX(t′, ρs) +Rs(t), (6.2)

〈Rs(t)〉 = 0, 〈Rs(t)Rs(t
′)〉 = κs(t− t′), (6.3)

where we allow the friction to depend on the past history through a memory kernel γs. We

would like to choose γs and κs appropriately to reproduce the correct boundary condition

described above.

Near the horizon the fluctuation of the string is given by (2.50)

X(t, ρ) =
∑

ω>0

√
α′ β

2 ℓ2 ω log(1/ǫ)

[
a(+)

ω e−iω(t−r∗) + a(−)
ω e−iω(t+r∗) + h.c.

]
, (6.4)

where ω is discretized with ∆ω given in (2.45). a
(+)
ω and a

(−)
ω are annihilation operators

for outgoing and ingoing modes, respectively. Depending on the boundary condition one

imposes at the UV cut off, a
(+)
ω and a

(−)
ω get related to each other (for example, in the

case of the Neumann boundary condition we imposed in subsection 2.3, they are related as

a
(−)
ω = ei θω a

(+)
ω ). However, because we are considering a Langevin equation which holds

independent of such relations, we regard a
(+)
ω and a

(−)
ω as independent variables.

Plugging (6.4) in and going to the frequency space, we can write the equation of
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motion (6.1) as

−i
√

α′ β ω

2 ℓ2 log(1/ǫ)

[(
γs[ω]+

r2H
2π α′ ℓ2

)
a(+)

ω eiωr∗+

(
γs[ω]− r2H

2π α′ ℓ2

)
a(−)

ω e−iωr∗

]
= Rs(ω)

(6.5)

for ω > 0. Here, γs[ω] is the Fourier-Laplace transform of γs(t) similar to (2.12) while Rs(ω)

is the Fourier transform of Rs(t) as in (2.11). In order to realize the boundary condition

that all ingoing modes fall in without reflection, we should set the coefficient of a
(−)
ω to

zero (since we want to be able to set the ingoing amplitude a
(−)
ω to any value). This gives

γs[ω] =
r2H

2π α′ ℓ2
=

2π ℓ2

α′ β2
⇒ γs(t) =

4π ℓ2

α′ β2
δ(t). (6.6)

Substituting this back into (6.5), we obtain the relation between the random force and

the outgoing mode coefficients a
(+)
ω as

Rs(ω) = −i
√

8π2 ℓ2 ω

α′ β3 log(1/ǫ)
eiωr∗ a(+)

ω . (6.7)

If this random force is to realize the thermal nature of the outgoing modes,

〈a(+)
ω

†a
(+)
ω 〉 = (eβω − 1)−1, then from (6.7) we obtain

D(ω) 〈Rs(ω)†Rs(ω)〉 =
2 ℓ2 ω

α′ β2 (eβω − 1)
(6.8)

≈ 2 ℓ2

α′ β3
, for β ω ≪ 1 . (6.9)

Here D(ω) is the density of states defined in (2.46). This means that the correlator for the

random force is

κs(t− t′) = 〈R(t)R(t′)〉 =

∫ ∞

−∞
dωD(ω) 〈Rs(ω)†Rs(ω)〉 eiω(t−t′) ≈ 4π ℓ2

α′ β3
δ(t− t′). (6.10)

The delta function behavior is due to the approximation we made in (6.9); the actual

κs(t − t′) is nonvanishing for |t − t′| . β, as one can see if one uses the original exact

expression (6.7), (6.8).

In summary, the boundary condition near the horizon can be effectively realized by a

Langevin equation for the string endpoint X(t, ρs) at the stretched horizon given by24

− 2 r3H ǫ

π α′ ℓ4
∂ρX = −2π ℓ2

α′ β2
∂tX +Rs(t), 〈Rs(t)Rs(t

′)〉 ≈ 4π ℓ2

α′ β3
δ(t− t′). (6.11)

The two terms on the right hand side of the first equation are, respectively, i) friction

which precisely cancels the ingoing waves, and ii) random force which is responsible for the

outgoing modes being thermally excited at the Hawking temperature.

24Note that these relations are operator relations whose full structure has been given in (6.7) and (6.8).
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Given the auto-correlation function for the random force Rs(t) acting on the string

endpoint at the stretched horizon, we can exploit the Sutherland-Einstein relation (2.4) to

compute the diffusion constant on the stretched horizon. We find

Ds
AdS3

=
2T 2

κs(0)
=

α′

2π ℓ2 T
(6.12)

which is the same as the diffusion constant for the string endpoint undergoing Brownian

motion in the boundary (3.9). In deriving (6.12) we had to assume that the dynamics of

the string endpoint on the stretched horizon obeys the Sutherland-Einstein relation derived

for a point particle. In other words, we assumed that a point particle fixed on the stretched

horizon will experience the same friction and random force as the ones appearing on the

right hand side of (6.11), and thus will random walk with the diffusion constant (6.12).

In fact, we will now argue that this is not quite unexpected from the viewpoint of the

membrane paradigm.

In the context of the membrane paradigm, it is conventional to ascribe transport

properties to the stretched horizon. In fact, it is well known that the shear viscosity of

the black hole membrane saturates the famous bound derived in the boundary field theory,

η/s = 1/4π, cf., [41, 47].25 In the hydrodynamic regime of the AdS/CFT correspondence,

ref. [46] argued that one can derive the universality of this ratio using the membrane

paradigm, i.e., the physics of the stretched horizon similar to the discussion given above.

We have here focussed on the stochastic Langevin process and derived the features of the

membrane that reproduce the physics of strings impinging on the black hole. Again we

see that the diffusion coefficient of heavy quarks in the boundary (3.9) agrees with that

derived for the stretched horizon (6.12).

6.2 Granular structure on the stretched horizon

In [49, 50], Susskind and collaborators put forward a provocative conjecture that a black

hole is made of a fundamental string covering the entire horizon. Although this picture

must be somewhat modified [51] since we now know that branes are essential ingredients

of string theory, it is still an attractive idea that, in the near horizon region where the

local temperature becomes string scale, a stringy “soup” or “cloud” of strings and branes

is floating around, covering the entire horizon.

If this picture is true, one naturally expects that it is this stringy cloud that is exerting

frictional and stochastic forces on the IR endpoint of the fundamental string as described

by (6.11); see figure 4. Can we learn anything about this stringy cloud? The stretched

horizon is located a distance ∼ ls =
√
α′ away from the mathematical horizon [50]. It is

occupied by a string of length L ∼ S ls, with S the entropy of the black hole. If we associate

one degree of freedom to each string segment of length ls, the number of degrees of freedom

equals the entropy, and one can try to think of these degrees of freedom in terms of free

quasi-particles. The average separation between the quasi-particles is equal to

∆X ∼ ℓ

rH
lp(d) (6.13)

25See also [48] for another membrane paradigm inspired perspective on the ratio η/s.
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Figure 4. A possible microscopic picture of a black hole, where the horizon is covered by a stringy

“cloud” made of strings and branes. An external fundamental string ending on a horizon is dissolved

into the cloud and incessantly kicked around by the cloud.

with lp(d) the d-dimensional Planck length. If the quasi-particles move with the speed of

light and σ represents the probability that quasi-particles will interact with the endpoint

of the string, then we expect a mean free path time of the order of

tmfp ∼ ∆X

σ
. (6.14)

Supposing for a moment we assume that this is the same as the mean free path time on

the boundary which, in appendix D, we argued to be given by tmfp ∼ 1/(T
√
λ). Combined

with (6.14) and (6.13) this leads to the interaction probability

σ ∼ d− 1

4π

ℓ

l2s
ld(p) (6.15)

which for the usual AdS5 case leads to a scaling with gs and N as σ ∼ g
1/2
s N−1/6. This is a

rather peculiar prediction for the interaction strength of the string endpoint with the quasi-

particles. Since the quasi-particles are made out of strings (or branes) some gs dependence

is to be expected, and the interaction strength indeed vanishes as gs → 0.

In deriving (6.15) we have assumed that the mean free path time on the stretched

horizon is identical to that on the boundary. This however, is unlikely to pertain as

we explain now. In fact, we will argue that on general grounds we should expect that

tmfp ∼ 1/T on any stretched horizon. The logic relies on using dimensional analysis coupled

with thermal physics of black holes. Generically we expect,

tmfp =
1

T
G
(
T ls,

lp(d)

ls
,
ℓ

ls

)
(6.16)

where G is a function of the dimensionless ratios of the length scales available. We have

fixed the overall normalization to be determined by the thermal scale on physical grounds.

Furthermore, using the facts that: (i) the dynamics of string probes generically are unaware

of the Planck scale (to determine which we could for instance use D-brane probes [52]) and,

(ii) the geometry near a black hole horizon is the Rindler spacetime, which is insensitive to
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the cosmological constant, we can argue that G ∼ 1, i.e., it is independent of the hierarchy

between the various length scales in the problem. More precisely, in the near horizon

region, r−rH
rH

≪ 1, the AdSd black hole metric (2.24) reduces to the Rindler metric:

ds2d ≈ −r̃2dt̃2 + dr̃2 + d ~̃X2
d−2, (6.17)

where

t̃ = 2πT t, r̃ =

√
r − rH
πT

, ~̃Xd−2 =
rH
ℓ
~Xd−2. (6.18)

Because the metric (6.17) does not contain any scale such as ℓ, the dynamics of a fun-

damental string in the near horizon region can only depend on ls (dependence on lp(d) is

excluded as in (i)). Therefore, the mean free path time t̃mfp determined from the dynamics

of the string can only depend on ls. However, because t̃mfp is dimensionless, it should be

that t̃mfp ∼ 1, which means tmfp ∼ 1/T . One can give a more concrete argument by using

the argument in appendix D applied to the near-horizon geometry (6.17).

Now using tmfp ∼ 1/T we can conclude that the interaction probability only depends

on the ratio of the d-dimensional Planck scale and string scale:

σ ∼ d− 1

4π

lp(d)

ls
, (6.19)

which suggests a universal dynamics of the stretched horizon independent of the

asymptotics of the spacetime. Nevertheless (6.19) leads to an interaction probability

which is a non-trivial function of gs as lp(d) depends non-trivially on the details of the

compactification.26

Clearly, it would be interesting to explore this line of thought further and, for example,

also find an interpretation for the collision time. However, many of the assumptions we

made are highly questionable. For example, we ignored backreaction, and only used the

quadratic part of the Nambu-Goto action. The latter approximation certainly breaks down

once we are a proper distance ∼ ls away from the horizon. It is also unclear to what extent

we can really think of the stretched horizon as a gas of almost free quasi-particles. We

leave an exploration of these issues to future work.

7 Discussion

In this paper, we discussed Brownian motion in the holographic context, in order to shed

light on near-equilibrium dynamics of strongly coupled thermal gauge theories. A useful

probe exhibiting Brownian motion consists of a fundamental string stretching between the

boundary and the horizon and being randomly excited by the black hole environment. We

26 Actually, there is no consensus on where to place the stretched horizon. For example, refs. [53, 54]

explained some thermodynamical properties of black holes by postulating the existence of quasi-particles

living on a stretched horizon a distance lp(d) away from the horizon, instead of ls. In this case with a

stretched horizon located lp(d) away from the horizon, we obtain a simpler result σ ∼ 1 instead of (6.19).

This simple form of σ is appealing, but we do not know of a physical reason to choose one over the other.
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established the relation between the observables associated with such Brownian particle

in the boundary theory and those of the transverse mode excitations of the fundamental

string. At the semiclassical level, the modes on the string are thermally excited due to

Hawking radiation and, consequently, the motion of the boundary Brownian particle is

described by a Langevin equation, which involves stochastic force and friction. In the bulk,

the stochastic force corresponds to the random excitation of the string by the Hawking

radiation, while the friction corresponds to the fact that the excitations on the string get

dissipated into the horizon.

Although in this paper we focused on the relation at the semiclassical level between

the boundary Brownian motion and the dynamics of the fundamental string in the bulk,

the boundary-bulk dictionary we wrote down in subsection 2.4 in principle allows one to

predict the precise correlations of the Hawking radiation quanta beyond the semiclassical

approximation, in terms of the precise correlation functions for the boundary Brownian

particle. Obtaining the latter of course requires one to compute correlation functions

in strongly coupled plasmas, which is a difficult task. Nevertheless, such a dictionary

is an important step toward understanding the microphysics underlying the fluid-gravity

correspondence.

One of the particularly interesting results of the current paper is the estimate in sub-

section 3.3 for the time scales associated with the Brownian particle immersed in a CFT

plasma:

trelax ∼ m√
λT 2

, tcoll ∼
1

T
, tmfp ∼ 1√

λT
. (7.1)

Note that setting m = T in trelax gives tmfp, which is a consistency check because a fluid

particle can be thought of as a Brownian particle with mass ∼ T . The fact that tcoll ≫ tmfp

at strong coupling λ ≫ 1 implies that a Brownian particle interacts with many plasma

particles simultaneously. Because of this, a Brownian particle with mass m ≪
√
λT

can thermalize in a time much shorter than tcoll, the time elapsed in a single process of

collision. This is reminiscent of the recent conjecture [55, 56] that black holes can scramble

information very fast, whose dual picture is that a degree of freedom in the boundary

theory interacts with a huge number of other degrees of freedom simultaneously. It would

be interesting to study this possible connection further.

Historically, the main achievement of the theory of Brownian motion was the deter-

mination of the value of the Avogadro constant NA = 6 × 1023 mol−1, which is huge but

finite. If NA were infinite, the diffusion constant would be zero and we would not be able

to observe Brownian motion. The fact that we can observe it in nature gives evidence

that NA is finite and fluids are not continuous but made of molecules. Then, what is the

analogue of the Avogadro constant in the Brownian motion in the AdS/CFT context we

studied, and what is the bulk significance of it? In the case of AdS5/SYM4, the macro-

scopic energy density of the plasma scales as E = O(N2), while the energy carried by a

microscopic quantum is of the order of the temperature T = O(N0). What corresponds

to the Avogadro constant is the ratio of these, N2/N0 = N2. The finiteness of NA corre-

sponds to the finiteness of N . In the bulk, on the other hand, what corresponds to E is the
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mass of the black hole, M ∼ Rs/GN ∼ O(G−1
N ) with Rs the Schwarzschild radius, while T

is the Hawking temperature TH ∼ O(G0
N ). The ratio is M/TH = O(G−1

N ) = O(N2). So, in

the bulk, the finiteness of NA corresponds to the finiteness of GN , or to the fact that the

energy carried by a Hawking radiation quantum is finite although it is much smaller than

the mass of the black hole.

We considered non-relativistic Brownian motion in the current paper, which is the

result of the quadratic approximation we made in (2.27) to the Nambu-Goto action. It

would be interesting to generalize our treatment to the relativistic case, where Brownian

motion and its Langevin dynamics are not very well understood; for a recent discussion,

see e.g. [5]. Such a generalization can also be regarded as a generalization of the drag

force computations of [20, 22], which are relativistic because the full Nambu-Goto action

was taken into account, to non-stationary (ω 6= 0) solutions. Also, with such a relativistic

formalism, one can presumably give a more rigorous derivation of tmfp than the one we did

in appendix D.

As explained above, the stochastic force appearing in the Langevin equation is related

to the friction term via the fluctuation-dissipation theorem. In the bulk the latter is

mimicked by the dissipative nature of the event horizon, which is present for all black

holes. On the other hand, the stochastic term arises due to the Hawking temperature of the

black hole; yet only non-extremal black holes have finite Bekenstein-Hawking temperature.

This leads to the naive puzzle that whereas the dissipation is always present, fluctuation

is seemingly absent for extremal black holes since these have zero temperature. It would

be interesting to see whether the quantum fluctuations which are present even at zero

temperature suffice to account for the origin of the stochastic processes. Note that this is

not a-priori unreasonable in the AdS/CFT context; although quantum processes are 1/N

suppressed in the large N field theory, we had to account for the semi-classical Hawking

radiation phenomena to see the origin of the random force in the Langevin equation.

Furthermore, extremal black holes could also be subject to super-radiant type instabilities

which can effectively mimic the physics of Hawking radiation. In fact, this feature has been

exploited recently to show how the microstate ‘geometries’ can reproduce some features of

the thermal Hawking spectrum [57].

The stochastic random force which drives the long time diffusive motion has a charac-

teristic dependence on the temperature, which we derived assuming that the system was

thermodynamically stable. As is well known, considering the global as opposed to the

Poincaré patch of AdS provides two distinct black hole solutions at the same temperature

— the small black hole which has negative specific heat and a large black hole which is in

thermal equilibrium with the Hawking radiation. To be able to access both these solutions

simultaneously one has to work in the global AdS geometry which has a compact spatial

boundary. The physics of a probe string endpoint in the small black hole background

should exhibit marked differences from the Brownian motion discussed above, despite the

system experiencing the same temperature. In a finite volume system we naively expect

the Brownian process to saturate after the time scale t = π3 ℓ4 T
α′ , for in this time the particle

has diffused throughout the system. In the bulk this presumably corresponds to the string

diffusing out completely on the stretched horizon and becoming indistinguishable from the
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thermal atmosphere. This can in fact be used to probe the difference between the large

and the small black hole. Imagine we normalize the physics of the string endpoint on the

boundary to correspond to the Brownian motion undertaken in the large black hole. Using

this as the UV boundary condition for the probe string in the small black hole background,

we can examine the dynamics of the endpoint at the IR stretched horizon. A plausible

conjecture for this dynamics is that the fluctuations of the string are macroscopically large

on the stretched horizon, in fact will have a scale comparable to the black hole itself.
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A Normalized basis

In this appendix, we discuss the quantization of the action (2.27) obtained from the Nambu-

Goto action and derive the normalized basis of solutions (2.48) to the equation of motion.

A.1 Canonical commutation relations and normalized basis

The canonical commutation relations for the theory (2.27):

S
(2)
NG = − 1

4πα′

∫
d2x

√
−g(x) gµν(x)GIJ (x)

∂XI

∂xµ

∂XJ

∂xν
, xµ = t, r, (A.1)

are given by

[XI(x),XJ (x′)]Σ = 0, [XI(x), nµ∂µX
J(x′)]Σ = i

2πα′

√
h
GIJδ(r − r′),

[nµ∂µX
I(x), nν∂νX

J(x′)]Σ = 0. (A.2)

Here, Σ is a Cauchy surface in the xµ = t, r part of the spacetime (2.26), hij is the metric

on Σ induced from gµν , and nµ is the future-pointing unit normal to Σ. For functions

f I(x), gI(x) satisfying the equation of motion (2.28), we can define the following inner

product:

(f, g)Σ = − i

2πα′

∫

Σ
dx

√
hnµGIJ(f I∂µg

J∗ − ∂µf
I gJ∗). (A.3)
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It can be shown that this inner product is independent of the choice of Σ, just as the

standard Klein-Gordon inner product [38]. This inner product satisfies

(f, g)∗ = −(f∗, g∗) = (g, f), (A.4)

(af1 + bf2, g)
∗ = a(f1, g) + b(f2, g), (f, ag1 + bg2)

∗ = a∗(f, g1) + b∗(f, g2). (A.5)

It is not difficult to show that the canonical commutation relations (A.2) are equivalent to

[(f,X)Σ, (g,X)Σ]Σ = (f, g∗)Σ ∀f, g satisfying the equation of motion (2.28). (A.6)

Let {uI
α(x)} be a basis of normalized functions satisfying the equation of motion (2.28)

such that

(uα, uβ) = −(u∗α, u
∗
β) = δαβ , (uα, u

∗
β) = 0, (A.7)

and expand XI as

XI(x) =
∑

α

[
aαu

I
α(x) + a†αu

I
α(x)∗

]
. (A.8)

Then one can readily show that the condition (A.6) implies

[aα, aβ ] = [a†α, a
†
β] = 0, [aα, a

†
β ] = δαβ . (A.9)

A.2 Normalized basis for AdS3

As shown in the main text, in the AdS3 case, the solution to the equation of motion can

be written as (see eq. (2.40))

uω(t, ρ) = A
[
f (+)

ω (ρ) +Bf (−)
ω (ρ)

]
e−iωt, (A.10)

where B satisfies boundary conditions (2.41) at ρ = ρc and (2.44) at ρ = 1+ 2ǫ. The inner

product (A.3) for this solution is

(uω, uω) =
2ωℓ2|A|2
α′β

[
2ρ

1 + ρ2ν2
+ log

(
ρ− 1

ρ+ 1

)]ρ=ρc

ρ=1+2ǫ

≈ 2ωℓ2|A|2
α′β

log

(
1

ǫ

)
. (A.11)

From this, one obtains the normalized basis:

uω(t, ρ) =

√
α′β

2ℓ2ω log(1/ǫ)

[
f (+)

ω (ρ) +Bf (−)
ω (ρ)

]
e−iωt. (A.12)

B Evaluation of displacement squared s2
reg

(t)

In this appendix, we evaluate the displacement squared (3.5), which can be written as:

s2reg(t) =
4α′β2

π2ℓ2

∫ ∞

0

dν

ν

1 + ν2

1 + ρ2
cν

2

sin2 πtν
β

e2πν − 1
=
α′β2

π2ℓ2

(
ρ2

c − 1

ρ2
c

I1 +
1

ρ2
c

I2

)
, (B.1)
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where

I1 = 4

∫ ∞

0

dx

x(1 + a2x2)

sin2 kx
2

ex − 1
=

∫ ∞

−∞

dx

|x|(1 + a2x2)

1 − eikx

e|x| − 1
,

I2 = 4

∫ ∞

0

dx

x

sin2 kx
2

ex − 1
=

∫ ∞

−∞

dx

|x|
1 − eikx

e|x| − 1
,

(B.2)

and we defined new variables by

x = 2πν, a =
ρc

2π
, k =

t

β
. (B.3)

The integrals (B.2) can be evaluated using the standard method of deforming the

contour on the complex x plane. For that, one first replaces |x| with
√
x2 + ǫ2 with ǫ

a small positive number. If k > 0, one can then deform the contour to run vertically

around the branch cut between iǫ and ∞. The resulting integral is simpler than (B.2) and,

after taking ǫ → 0, can be analytically evaluated. One should also take into account the

contribution from the poles of the integrand on the imaginary axis. The final result is

I1 =
1

2

[
ek/aEi

(
− k

a

)
+ e−k/aEi

(
k

a

)]
+

1

2

[
ψ

(
1 +

1

2πa

)
+ ψ

(
1 − 1

2πa

)]

+
e−2π|k|

2

[
2F1(1, 1+ 1

2πa ; 2+ 1
2πa ; e−2π|k|)

1+ 1
2πa

+
2F1(1, 1− 1

2πa ; 2− 1
2πa ; e−2π|k|)

1− 1
2πa

]

− π

2
(1 − e−|k|/a) cot

1

2a
+ log

(
2a sinhπk

k

)
,

I2 = log

(
sinhπk

πk

)
.

(B.4)

where Ei(z) is the exponential integral, 2F1(α, β; γ; z) is the hypergeometric function, and

ψ(z) = (d/dz) log Γ(z) is the digamma function. For Ei(z), we take a branch where both

Ei(x > 0) and Ei(x < 0) are real.

If ρc ≫ 1 and thus a ≫ 1, one can use the expressions (B.4) to derive the following

behavior:

I1 =

{
πk2

2a + O(a−2)

πk + O(log k)
I2 =

{
O(a0) (k ≪ a)

πk + O(log k) (k ≫ a)
(B.5)

Therefore, if ρc ≫ 1, s2reg(t) has the following behavior:

s2reg(t) =





α′

ℓ2ρc
t2 + O( 1

ρ2
c
) (t≪ β)

α′β
πℓ2

t+ O(log t
β ) (t≫ β)

(B.6)

C Distribution of momentum p

In this appendix, we compute the probability distribution of the momentum p = mẋ, where

x is the position of the string endpoint at the UV cut-off ρ = ρc, and show that it is exactly

equal to the Maxwell-Boltzmann distribution.27

27Here, we will ignore the fact that the mass of the quark gets corrected in thermal medium [20], and

make a crude estimate by using the bare mass (2.39).
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From (2.51), the momentum of the particle is

p = mẋ(t) = − im
ℓ

∑

ω>0

√
2α′βω

log(1/ǫ)

[
1 − iν

1 − iρcν

(
ρc − 1

ρc + 1

)iν/2

e−iωtaω − h.c.

]
(C.1)

We would like to know the probability distribution f(p) of p. By definition,

〈eipξ〉 =

∫ ∞

−∞
dp eipξf(p). (C.2)

Namely, f(p) is the Fourier transform of 〈eipξ〉. So, what we want to compute is

〈:eipξ :〉 =

〈
:exp

{
ξm

ℓ

∑

ω>0

√
2α′βω

log(1/ǫ)

[
1 − iν

1 − iρcν

(
ρc − 1

ρc + 1

)iν/2

e−iωtaω − h.c.

]}
:

〉
, (C.3)

where we regularized the operator by normal ordering. The expectation value is with

respect to the density matrix (2.52). Using the identity

tr
[
e−βωa†a :eαa−α∗a†

:
]

=
1

1 − e−βω
exp

(
− |α|2
eβω − 1

)
, (C.4)

we can compute

〈:eipξ :〉 = C exp

[
−2ξ2α′m2

ℓ2

∫ ∞

0

dν ν(1 + ν2)

(1 + ρ2
cν

2)(e2πν − 1)

]
, (C.5)

where C is a constant independent of ξ and we rewrote the sum over ω by an integral

using (2.45). This integral can be evaluated by deforming the contour in the complex

plane, just as we did for (B.2), the result being

∫ ∞

0

dν ν(1 + ν2)

(1 + ρ2
cν

2)(e2πν − 1)
=
ρ2

c − 1

4ρ4
c

[
π cot

π

ρc
− ψ

(
1+

1

ρc

)
−ψ

(
1− 1

ρc

)
− 2 log ρc

]
+

1

24ρ2
c

,

(C.6)

where ψ(z) = (d/dz) log Γ(z) is the digamma function. Using this expression, it is easy to

show that, for large ρc,

∫ ∞

0

dν ν(1 + ν2)

(1 + ρ2
cν

2)(e2πν − 1)
=

1

4ρc
+ . . . . (C.7)

Therefore, from (C.5), we obtain

〈:eipξ :〉 = Ce−mξ2/2β (C.8)

for large ρc, where we used (2.39). By Fourier transforming,

f(p) =

∫ ∞

−∞

dξ

2π
e−ipξ〈:eipξ :〉 ∝ e−βEp , Ep ≡ p2

2m
. (C.9)

This is exactly the Maxwell-Boltzmann distribution of particles with energy Ep. Therefore,

for large ρc, the endpoint of the string behaves like a non-relativistic particle with mass m

immersed in a thermal bath of temperature T .
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Figure 5. A sample of the stochastic variable R(t), which consists of many pulses randomly

distributed.

D Mean free path time tmfp

In subsection 3.3, we discussed the time scales associated with Brownian motion: the

relaxation time trelax and the collision duration time tcoll. In this appendix, we evaluate tmfp,

the mean free path time, or the typical time between two collisions, using the correlators

of the random force R(t) in the case of AdS3. We argue that the mean free path time is

given by

tmfp ∼ 1√
λ T

, (D.1)

where λ ∼ ℓ4/α′2 is the ’t Hooft coupling, although we are unable to give a rigorous

derivation. We expect that this holds in more general cases, including AdS5.

In subsection D.1, we discuss how to determine characteristic time scales from corre-

lators in general. In subsection D.2, we compute tmfp for the Brownian motion in the case

of AdS3.

D.1 Correlators and time scales

Consider a stochastic quantity R(t) whose functional form consists of many pulses ran-

domly distributed. Let the form of a single pulse be f(t), with width ∆ and amplitude A.

Furthermore, assume that the pulses come with random signs. If we have k pulses at t = ti
(i = 1, 2, . . . , k), then R(t) is given by

R(t) =

k∑

i=1

ǫif(t− ti), (D.2)

where ǫi = ±1 are random signs. For a schematic picture, see figure 5. Let us assume that

the distribution of pulses obeys the Poisson distribution. Namely, the probability that

there are k pulses in an interval of length τ , say [0, τ ], is given by

Pk(τ) = e−µτ (µτ)k

k!
. (D.3)

Here, µ is the number of pulses per unit time. In other words, 1/µ is the average distance

between two pulses. We do not assume that the pulses are well separated; namely, we do

not assume ∆ ≪ 1/µ. Later, we will identify R(t) with the random force in the Langevin
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equation; the pulses are contributions from a collision with a fluid particle, and therefore

tmfp = 1/µ.

The 2-point function for R can be written as

〈R(t)R(t′)〉 =

∞∑

k=1

e−µτ (µτ)k

k!

k∑

i,j=1

〈ǫiǫjf(t− ti)f(t′ − tj)〉k, (D.4)

where we assumed t, t′ ∈ [0, τ ] and 〈 〉k is the statistical average when there are k pulses

during [0, τ ]. Because k pulses are randomly and independently distributed in the interval

[0, τ ], this expectation value is computed as

k∑

i,j=1

〈ǫiǫjf(t− ti)f(t′ − tj)〉k

=
1

τk

∫ τ

0
dt1 · · · dtk




k∑

i=1

f(t− ti)f(t′ − ti) +

k∑

i6=j

〈ǫiǫj〉kf(t− ti)f(t′ − tj)


 . (D.5)

Here, the second term vanishes because 〈ǫiǫj〉k = 0 for i 6= j. Therefore, one readily

computes

∑

i,j=1

〈ǫiǫjf(t− ti)f(t′ − tj)〉k =
k

τ

∫ τ

0
dt1f(t− t1)f(t′ − t1)

≈ k

τ

∫ ∞

−∞
dt1 f(t− t′ − t1)f(−t1) ≡

k

τ
F (t− t′). (D.6)

Here, in going to the second line, we took τ to be much larger than the width ∆ of f(t),

which is always possible because τ is arbitrary. Substituting this back into (D.4), we find

〈R(t)R(t′)〉 = µF (t− t′). (D.7)

In a similar way, one can compute the following 4-point function:

〈R2(t)R2(t′)〉 =
∞∑

k=1

e−µτ (µτ)k

k!

k∑

i,j,m,n=1

〈ǫiǫjǫmǫnf(t− ti)f(t− tj)f(t′ − tm)f(t′ − tn)〉k.

(D.8)

Again, the expectation value 〈ǫiǫjǫmǫn〉k vanishes unless some of i, j,m, n are equal. The

possibilities are i = j 6= m = n, i = m 6= j = n, i = n 6= j = m, and i = j = m = n.

Therefore,

k∑

i,j,m,n=1

〈ǫiǫjǫmǫnf(t− ti)f(t− tj)f(t′ − tm)f(t′ − tn)〉k

=
〈 k∑

i6=j

[
f(t− ti)

2f(t′ − tj)
2 + 2f(t− ti)f(t′ − ti)f(t− tj)f(t′ − tj)

]

+

k∑

i=1

f(t− ti)
2f(t′ − ti)

2
〉

k
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=
k(k − 1)

τ2

∫ ∞

−∞
dt1dt2

[
f(t− t1)

2f(t′ − t2)
2 + f(t− t1)f(t′ − t1)f(t− t2)f(t′ − t2)

]

+
k

τ

∫ ∞

−∞
dt1f(t− t1)

2f(t′ − t1)
2. (D.9)

Substituting this back into (D.8), we obtain

〈R2(t)R2(t′)〉 = µ2[F (0)2 + F (t− t′)2] + µ

∫ ∞

−∞
du f(t− t′ − u)2f(−u)2

= 〈R2(t)〉〈R2(t′)〉 + 〈R(t)R(t′)〉2 + µ

∫ ∞

−∞
du f(t− t′ − u)2f(−u)2. (D.10)

For example, consider the following shape function for the pulse

f(t) = Ae−t2/2∆2
. (D.11)

Then, one computes

〈R(t)R(0)〉 =
√
π∆µA2e−t2/4∆2

, (D.12)

〈R2(t)R2(0)〉 = 〈R2(t)〉〈R2(0)〉 + 〈R(t)R(0)〉2 +
1√

2π∆µ
〈R(t)R(0)〉2. (D.13)

Therefore, if we know the behavior of 〈R(t)R(0)〉, we can read off ∆ and µA from (D.12).

If we further know 〈R2(t)R2(0)〉 then, from (D.13), we can read off µ. In particular, if we

denote the last term in (D.13) by 〈R4〉′, then

µ−1 ∼ 〈R4〉′

〈R2〉2
∆. (D.14)

This result (D.14) is expected to be true for other forms of f(t), not just for the Gaussian

case (D.11).

Note that the treatment above is classical. If R(t) is a quantum operator, we should

consider the classical part of the correlators by appropriately subtracting quantum diver-

gences.

D.2 Evaluation of tmfp for Brownian motion

Let us evaluate tmfp for the boundary Brownian motion, by identifying the stochastic

function R(t) in the previous subsection with the random force appearing in the Langevin

equation. A pulse f(t) corresponds to the contribution from a collision with a single plasma

particle. ∆ is the time elapsed in a single collision, namely ∆ = tcoll, while 1/µ is the time

between two collisions, namely 1/µ = tmfp.

Using eq. (2.51) as well as the relations p = mẋ and R(ω) = p(ω)/µ(ω), where µ(ω) is

given by (3.23), we can write the random force R(t) as

R(t) =
∑

ω>0

(rω e
iωt aω + h.c.), rω = −i

√
8π2ℓ2ω

α′β3 log(1/ǫ)

1 − iν

1 − iν/ρc

(
ρc − 1

ρc + 1

)iν
2

. (D.15)
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Because aω are free harmonic oscillators, it is easy to show that

〈:R2(t)R2(0) :〉 = 〈:R2(t) :〉〈:R2(0) :〉 + 〈:R(t)R(0) :〉2. (D.16)

Here, we are considering the normal-ordered correlators because the result of the previous

subsection applies to the classical piece of correlators; henceforth, normal ordering of op-

erators will be understood. By comparing (D.16) with (D.13), we appear to have tmfp = 0.

However, this is due to the non-relativistic approximation we made in (2.27) when we ex-

panded the Nambu-Goto action up to quadratic order. If we keep the next order (quartic)

terms, we obtain the following additional contribution to the Hamiltonian:

H(4) = − 1

16πα′

∫ rc

rs

dr

[
(∂tX)2

h(r)
− r4h(r)

ℓ4
(∂rX)2

]2

, h(r) = 1 −
(rH
r

)2
, (D.17)

where rs = (1+2ǫ) rH , ǫ≪ 1. This corresponds to the first relativistic correction to the non-

relativistic action S
(2)
NG. In the presence of this interaction, there is an extra contribution

to the correlator 〈R2(t)R2(0)〉 coming from the contractions with the terms in H(4). If we

consider the case with t = 0, we have

〈R2(0)R2(0)〉 ≡ 〈R4〉 = 2〈R2〉20 − β〈R4H(4)〉0, (D.18)

where 〈 〉0 is the expectation value with respect to the quadratic action S
(2)
NG, i.e., it is the

expectation value with respect to the density matrix (2.52).

So, let us evaluate the last term in (D.18), which will be denoted by 〈R4〉′. Using the

expansions (2.47) and (D.15), the explicit expression for 〈R4〉′ is

〈R4〉′ = − β

16πα′

〈
∑

ω1,...,ω4>0

(rω1aω1 + h.c.)(rω2aω2 + h.c.)(rω3aω3 + h.c.)(rω4aω4 + h.c.)

×
∫ rc

rs

dr

{
1

h

[∑

ω>0

ω(uωaω − u∗ωa
†
ω)

]2
+
r4h

ℓ4

[∑

ω>0

(
(∂ruω)aω + (∂ru

∗
ω)a†ω

)]2
}2〉

0

.

(D.19)

There are many terms coming from the expansion of this. Let us focus on the following
term in particular:

− β

16πα′

∑

ω1,...,ω4

∑

ω′

1
,...,ω′

4

ω1 ω2 ω3 ω4 r
∗
ω1
r∗ω2

r∗ω3
rω4

〈a†ω1
a†ω2

a†ω3
aω4

aω′

1
aω′

2
aω′

3
a†

ω′

4

〉
0

∫ rc

rs

dr

h2
uω′

1
uω′

2
uω′

3
u∗ω′

4

.

(D.20)

There are various ways to contract a, a†. Let us take the term obtained by contracting

aωi against a†ω′
i
, or a†ωi against aω′

i
, where i = 1, . . . , 4. Other contractions give similar

contributions. This particular contraction gives the following:

− β

16πα′

∑

ω1,...,ω4

ω1 ω2 ω3 ω4 r
∗
ω1
r∗ω2

r∗ω3
rω4

[
4∏

i=1

1

eβωi − 1

]∫ rc

rs

dr

h2
uω1uω2uω3u

∗
ω4

∼ 1

α′β3

∑

ω1,...,ω4.β−1

r∗ω1
r∗ω2

r∗ω3
rω4

∫ rc

rs

dr

h2
uω1uω2uω3u

∗
ω4
, (D.21)
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where the Bose-Einstein factor 1/(eβωi −1) has effectively cut off the ωi sum at β−1. From

now on, we do not keep track of numerical factors.

We would like to evaluate the r integral in (D.21). Because the integrand in (D.21)

has a second order pole at r = rH due to h−2, the dominant contribution comes from

r ∼ rs ≈ rH . For a while, let us instead consider the case where there is a first order pole

at r = rH , by replacing h−2 by h−1. From (2.50) and (2.31), near r = rH ,

uω ≈
√

α′β

2ℓ2ω log(1/ǫ)
(eiωr∗ + eiθωe−iωr∗)e−iωt,

dr

h
≈ r2H

ℓ2
dr∗ =

4π2ℓ2

β2
dr∗. (D.22)

Therefore, the integral in (D.21) (with h−2 replaced by h−1) is

∼ α′2

ℓ2[log(1/ǫ)]2
√
ω1ω2ω3ω4

∫

− β
4π

log( 1
ǫ
)
dr∗ [eiω1r∗ + eiθω1e−iω1r∗ ][eiω2r∗ + eiθω2e−iω2r∗ ]

× [eiω3r∗ + eiθω3e−iω3r∗ ][e−iω4r∗ + e−iθω4eiω4r∗ ] e−i(ω1+ω2+ω3−ω4)t (D.23)

The dominant part in the ǫ→ 0 limit can be easily evaluated by noting that
∫

− β
4π

log( 1
ǫ
)
dr∗ e

iωr∗ = δω,0
β

4π
log

(1

ǫ

)
+ (finite as ǫ→ 0). (D.24)

For example, by collecting the first terms in the four pairs of the brackets in (D.23), one

finds

∼ α′2β

ℓ2 log(1/ǫ)
√
ω1ω2ω3ω4

δω1+ω2+ω3, ω4. (D.25)

Note that the finite part in (D.24) does not survive in the ǫ → 0 limit. If we plug this

result back into (D.21), using the explicit expression for rω in (D.15), we find

∼ ℓ2

α′β8[log(1/ǫ)]3

∑

ω1,ω2,ω3.β−1

[
1 − iν1

1 − iν1/ρc

(
ρc − 1

ρc + 1

)iν1/2][
2

][
3

][
1 + 2 + 3

]∗
.

(D.26)

Here, “[ 2 ]” denotes the previous factor with ν1 replaced by ν2. “[ 3 ]” and “[ 1 + 2 + 3 ]”

are similar. By rewriting the sum by integral using (2.45) and using the fact that ρc ≫ 1,

this is estimated as

∼ ℓ2

α′β5

∫

.β−1

dω1 dω2 dω3 ∼ ℓ2

α′β8
∼ 1

β8
√
λ
, (D.27)

where we used the relation λ ∼ ℓ4/α′2. There are many other terms we did not discuss,

such as other contractions of (D.20), but these will not affect this estimate.

However, of course, this is not precisely what we wanted to evaluate; we have replaced

h−2 in (D.21) by h−1. However, using h−2 instead will change the above discussion, because

the r integral around r = rH will now give a power (∼ 1/ǫ) divergence instead of the

logarithmic divergence we had in (D.24). This log divergence was important in obtaining
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the result (D.27), because this log divergence was canceled against the normalization factor

in uω ∼ [log(1/ǫ)]−1/2. What we have forgotten is that, if we include the quartic correction

H(4), we should also consider corrections to the normalized basis uω, which presumably

introduces a normalization factor that goes as ǫ1/2. This corrected normalization factor

should cancel against the power divergence coming from h−2, thus giving a finite result,

which should give (D.27) at the end of the day — namely,

〈R4〉′ ∼ 1

β8
√
λ
. (D.28)

Whatever the modifications due to the quartic term are, the dominant contribution comes

from the region r ∼ rH and quantities such as rc or m cannot enter the final result. Also,

the relativistic correction must come with a factor of α′ ∼ λ−1/2. There being no other

available quantities, 〈R4〉′ must be proportional to (D.28). A fully relativistic formalism

in which one can rigorously and explicitly show (D.28) is beyond the scope of the current

paper. We leave development of such a formalism for future research.

From (3.35), we have

〈R2〉 = κn(t = 0) ∼ ℓ2

α′β4
∼ 1

β4
√
λ
. (D.29)

Therefore, using the formula (D.14) with ∆ = β, we obtain

tmfp ∼ β√
λ

=
1

T
√
λ
. (D.30)

It is satisfactory that this does not depend on the properties of the Brownian particle probe

such as m, because tmfp is a time scale associated with the fluid itself.

E Solving equation of motion for general d using matching technique

In this appendix, we solve the wave equation (5.6) for general dimensions using the match-

ing technique for low frequencies ω ≪ T . We would like to obtain a solution which is purely

ingoing at the horizon and, in particular, determine its behavior near the boundary.

Let us denote by X−
ω (r) this particular solution of the wave equation (5.6) which

obeys the purely ingoing boundary condition at the horizon r = rH . To determine it, let

us consider three regions: (A) a near horizon region with r ∼ rH and V (r) ≪ ω2, (B) an

intermediate region with V (r) ≫ ω2, and (C) an asymptotic region with r ≫ rH . The idea

is to consider the approximate solutions in each of the three regions, and to match these

to each other. For more details, see [58] and references therein. As before, we define

ρ ≡ r

rH
, ν ≡ ℓ2 ω

rH
. (E.1)

In terms of these parameters the constraints on the different regions under consideration,

V (r) ≪ ω2 and V (r) ≫ ω2 respectively translate to ρ− 1 ≪ ν2 and ρ− 1 ≫ ν2. Further-

more, the low frequency condition, ω ≪ T , can be written as ν ≪ 1.
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In region A, where ρ − 1 ≪ ν2 and we can drop the potential V (r) from (5.6), the

linearly independent solutions are

X±
A (r) = e± i ω r∗ ∼ exp

[
± i ν

d− 1
log(ρ− 1)

]
. (E.2)

The purely ingoing solution is X−
A (r) = e−i ω r∗ . Now, since ν ≪ 1 we can focus on a

region slightly away from the horizon (still remaining in region A), such that exp(− ν
d−1 ) ≪

ρ− 1 ≪ ν2. Here we can approximate the purely ingoing solution as

X−
A (ρ) ∼ 1 − i ν

d− 1
log(ρ− 1). (E.3)

In the asymptotic region C, where ρ≫ 1, we can approximate h(r) ∼ 1. The linearly

independent solutions of (5.4) are then

X±
C (ρ) =

(
1 ∓ iν

ρ

)
e±i ν/ρ. (E.4)

The general solution can be written as

XC = C+X+
C + C−X−

C , (E.5)

which, for ρ≫ 1, can be expanded as

XC = (C+ + C−)

(
1 +

ν2

2ρ2
+ . . .

)
+ (C+ − C−)

(
i

3

ν3

ρ3
+ . . .

)
. (E.6)

Finally, in region B, where ρ− 1 ≫ ν2 and we can drop ω2 from (5.6), leading then to

the general solution

XB(ρ) = B1 +B2

∫ ρ

∞

dρ′

ρ′4h(ρ′)
, (E.7)

where B1 and B2 are two integration constants. For ρ ∼ 1 (but still ρ − 1 ≫ ν2), we can

approximate h(ρ) ∼ (d− 1)(ρ− 1) and (E.7) gives

XB(ρ) = B1 +B2

[
1

d− 1
log(ρ− 1) + b

]
, (E.8)

where b is a constant independent of ν whose precise value is not relevant for our purpose.

We now have the solutions in the three regions A-C; by matching them across the do-

mains of overlap we can relate the various constants of integration. To begin with we deter-

mine B1 and B2 by matching (E.8) in region B with the solution (E.3) in region A, obtaining

B1 = 1 + i b ν, B2 = − i ν. (E.9)

To determine C± we expend the solution in region B (E.7) for ρ≫ 1 and match it to that

in region C (E.6) leading to

B1 = C+ + C−, B2 = −iν3(C+ − C−). (E.10)

It must be borne in mind that we have performed the matching only in the small frequency

limit ν ≪ 1 and as a result should trust the expressions only at the leading order in ν. Solv-

ing (E.9) and (E.10), we finally find that the purely ingoing solution behaves at large ρ as

X−
ω (ρ) = C+X+

C + C−X−
C , C± =

1

2

(
1 ± 1

ν2
+ i b ν

)
. (E.11)
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